• Laser & Optoelectronics Progress
  • Vol. 58, Issue 19, 1900005 (2021)
Xuefeng Wu* and Sanlin Mei
Author Affiliations
  • School of Mechanical Power Engineering, Harbin University of Science and Technology, Harbin , Heilongjiang 150080, China
  • show less
    DOI: 10.3788/LOP202158.1900005 Cite this Article Set citation alerts
    Xuefeng Wu, Sanlin Mei. Research Progress in Femtosecond Laser Machining Mechanism and Simulation Analysis[J]. Laser & Optoelectronics Progress, 2021, 58(19): 1900005 Copy Citation Text show less
    References

    [1] Chen Y Q, Wang J H[M]. Laser principle, 24-36(1992).

    [2] Valdmanis J A, Fork R L, Gordon J P. Generation of optical pulses as short as 27 femtoseconds directly from a laser balancing self-phase modulation, group-velocity dispersion, saturable absorption, and saturable gain[J]. Optics Letters, 10, 131-133(1985).

    [3] Haus H A, Fujimoto J G, Ippen E P. Structures for additive pulse mode locking[J]. Journal of the Optical Society of America B, 8, 2068-2076(1991).

    [4] Pervak V, Tikhonravov A V, Trubetskov M K et al. 1.5-octave chirped mirror for pulse compression down to sub-3 fs[J]. Applied Physics B, 87, 5-12(2007).

    [5] Spence D E, Kean P N, Sibbett W. 60-fsec pulse generation from a self-mode-locked Ti∶sapphire laser[J]. Optics Letters, 16, 42-44(1991).

    [6] He F, Cheng Y. Femtosecond laser micromachining: frontier in laser precision micromachining[J]. Chinese Journal of Lasers, 34, 595-622(2007).

    [7] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 56, 219-221(1985).

    [8] Backus S, Durfee C G, Murnane M M et al. High power ultrafast lasers[J]. Review of Scientific Instruments, 69, 1207-1223(1998).

    [9] Lozhkarev V V, Freidman G I, Ginzburg V N et al. 200 TW 45 fs laser based on optical parametric chirped pulse amplification[J]. Optics Express, 14, 446-454(2006).

    [10] Keller U. Recent developments in compact ultrafast lasers[J]. Nature, 424, 831-838(2003).

    [11] Tajima T, Mourou G. Zettawatt-exawatt lasers and their applications in ultrastrong-field physics[J]. Physical Review Special Topics-Accelerators and Beams, 5, 031301(2002).

    [12] Xia B, Jiang L, Wang S M et al. Femtosecond laser drilling of micro-holes[J]. Chinese Journal of Lasers, 40, 0201001(2013).

    [13] Gao J, Cao G Q. The application technology of special machining micro-hole[J]. Machinery Design & Manufacture, 169-171(2005).

    [14] Konov V I. Laser in micro and nanoprocessing of diamond materials[J]. Laser & Photonics Reviews, 6, 739-766(2012).

    [15] Wu X F, Yin H L, Li Q. Femtosecond laser processing of carbon nanotubes film[J]. Chinese Journal of Lasers, 46, 0902002(2019).

    [16] Wang Z H, Wang B X, Kamano M et al. Fabrication of silicon micro/nanostructures based on laser interference ablation[J]. Laser & Optoelectronics Progress, 56, 163201(2019).

    [17] Matthias E, Reichling M, Siegel J et al. The influence of thermal diffusion on laser ablation of metal films[J]. Applied Physics A, 58, 129-136(1994).

    [18] Stuart B C, Feit M D, Herman S et al. Optical ablation by high-power short-pulse lasers[J]. Journal of the Optical Society of America B, 13, 459-468(1996).

    [19] Lenzner M, Krausz F, Krüger J et al. Photoablation with sub-10 fs laser pulses[J]. Applied Surface Science, 154/155, 11-16(2000).

    [20] Gómez D, Goenaga I. On the incubation effect on two thermoplastics when irradiated with ultrashort laser pulses: broadening effects when machining microchannels[J]. Applied Surface Science, 253, 2230-2236(2006).

    [21] Baudach S, Bonse J, Krüger J et al. Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate[J]. Applied Surface Science, 154/155, 555-560(2000).

    [22] Watanabe M, Sun H B, Juodkazis S et al. Three-dimensional optical data storage in vitreous silica[J]. Japanese Journal of Applied Physics, 37, L1527-L1530(1998).

    [23] Liu J M. Simple technique for measurements of pulsed Gaussian-beam spot sizes[J]. Optics Letters, 7, 196-198(1982).

    [24] Stuart B C, Feit M D, Herman S et al. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics[J]. Physical Review B, 53, 1749-1761(1996).

    [25] Mustafa H, Mezera M, Matthews D T A et al. Effect of surface roughness on the ultrashort pulsed laser ablation fluence threshold of zinc and steel[J]. Applied Surface Science, 488, 10-21(2019).

    [26] Crouch C H, Carey J E, Warrender J M et al. Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon[J]. Applied Physics Letters, 84, 1850-1852(2004).

    [27] Pronko P P, Dutta S K, Squier J et al. Machining of sub-micron holes using a femtosecond laser at 800 nm[J]. Optics Communications, 114, 106-110(1995).

    [28] Ditmire T, Tisch J W G, Springate E et al. High-energy ions produced in explosions of superheated atomic clusters[J]. Nature, 386, 54-56(1997).

    [29] Henyk M, Mitzner R, Wolfframm D et al. Laser-induced ion emission from dielectrics[J]. Applied Surface Science, 154/155, 249-255(2000).

    [30] Henyk M, Wolfframm D, Reif J. Ultra short laser pulse induced charged particle emission from wide bandgap crystals[J]. Applied Surface Science, 168, 263-266(2000).

    [31] Tao S, Wu B X. The effect of emitted electrons during femtosecond laser-metal interactions: a physical explanation for Coulomb explosion in metals[J]. Applied Surface Science, 298, 90-94(2014).

    [32] Li S C, Li S Y, Zhang F J et al. Possible evidence of Coulomb explosion in the femtosecond laser ablation of metal at low laser fluence[J]. Applied Surface Science, 355, 681-685(2015).

    [33] Zheng Z J, Wu C J, Liu S Y et al. Analysis of energy occupying ratio of Coulomb explosion and thermal effect in picosecond pulse laser processing[J]. Optics Communications, 424, 190-197(2018).

    [34] Jia T Q, Xu Z Z, Li X X et al. Microscopic mechanisms of ablation and micromachining of dielectrics by using femtosecond lasers[J]. Applied Physics Letters, 82, 4382-4384(2003).

    [35] Falkovsky L A, Mishchenko E G. Electron-lattice kinetics of metals heated by ultrashort laser pulses[J]. Journal of Experimental and Theoretical Physics, 88, 84-88(1999).

    [36] Glezer E N, Huang L, Finlay R J et al. Ultrafast laser-induced microexplosions in transparent materials[J]. Proceedings of SPIE, 2966, 392-403(1997).

    [37] Hand D P, Russell P St J. Photoinduced refractive-index changes in germanosilicate fibers[J]. Optics Letters, 15, 102-104(1990).

    [38] Dickinson J T, Orlando S, Avanesyan S M et al. Color center formation in soda lime glass and NaCl single crystals with femtosecond laser pulses[J]. Applied Physics A, 79, 859-864(2004).

    [39] Du D, Liu X, Korn G et al. Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs[J]. Applied Physics Letters, 64, 3071-3073(1994).

    [40] Bryukvina L I, Pestryakov E V, Kirpichnikov A V et al. Formation of color centers and light scattering structures by femtosecond laser pulses in sodium fluoride[J]. Optics Communications, 330, 56-60(2014).

    [41] Marcinkevičiūtė A, Jukna V, Šuminas R et al. Supercontinuum generation in the absence and in the presence of color centers in NaCl and KBr[J]. Results in Physics, 14, 102396(2019).

    [42] Göppert-Mayer M. Über elementarakte mit zwei quantensprüngen[J]. Annalen Der Physik, 401, 273-294(1931).

    [43] Yuan L, Ng M L, Herman P R. Femtosecond laser writing of phase-tuned volume gratings for symmetry control in 3D photonic crystal holographic lithography[J]. Optical Materials Express, 5, 515-529(2015).

    [44] Cui Y, Zhang H Y, Zhao Y A et al. Microstructure changes of gold film under femtosecond laser irradiation[J]. Chinese Journal of Lasers, 46, 0203001(2019).

    [45] Wu D, Wu S Z, Xu J et al. Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip[J]. Laser & Photonics Reviews, 8, 458-467(2014).

    [46] Wu D, Xu J, Niu L G et al. In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting[J]. Light: Science & Applications, 4, e228(2015).

    [47] Chen F, Yang Q, Shan C et al. Fabrication of complex three-dimensional metallic microstructures based on femtosecond laser micromachining[C], SW1K(2015).

    [48] Wu E S, Strickler J H, Harrell W R et al. Two-photon lithography for microelectronic application[J]. Proceedings of SPIE, 1674, 776-782(1992).

    [49] Kawata S, Sun H B, Tanaka T et al. Finer features for functional microdevices[J]. Nature, 412, 697-698(2001).

    [50] Zhou M, Liu L P, Dai Q X et al. Fabrication of micro-structures with two-photon absorption induced by femtosecond laser[J]. Chinese Journal of Lasers, 32, 1342-1346(2005).

    [51] Rethfeld B, Sokolowski-Tinten K, von der Linde D et al. Timescales in the response of materials to femtosecond laser excitation[J]. Applied Physics A, 79, 767-769(2004).

    [52] Bulgakova N M, Bourakov I M, Bulgakova N A. Rarefaction shock wave: formation under short pulse laser ablation of solids[J]. Physical Review E, 63, 046311(2001).

    [53] Borowiec A, Bruce D M, Cassidy D T et al. Imaging the strain fields resulting from laser micromachining of semiconductors[J]. Applied Physics Letters, 83, 225-227(2003).

    [54] Chichkov B N, Momma C, Nolte S et al. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Physics A, 63, 109-115(1996).

    [55] Nolte S, Momma C, Jacobs H et al. Ablation of metals by ultrashort laser pulses[J]. Journal of the Optical Society of America B, 14, 2716-2722(1997).

    [56] Zhu X. A new method for determining critical pulse width in laser material processing[J]. Applied Surface Science, 167, 230-242(2000).

    [57] Jiang L, Tsai H L. Improved two-temperature model and its application in ultrashort laser heating of metal films[J]. Journal of Heat Transfer, 127, 1167-1173(2005).

    [58] Fang R R, Wei H, Li Z H et al. Improved two-temperature model including electron density of states effects for Au during femtosecond laser pulses[J]. Solid State Communications, 152, 108-111(2012).

    [59] Ren Y P, Chen J K, Zhang Y W. Modeling of ultrafast phase changes in metal films induced by an ultrashort laser pulse using a semi-classical two-temperature model[J]. International Journal of Heat and Mass Transfer, 55, 1620-1627(2012).

    [60] Ren Y P, Cheng C W, Chen J K et al. Thermal ablation of metal films by femtosecond laser bursts[J]. International Journal of Thermal Sciences, 70, 32-40(2013).

    [61] Chen L, Liu X D, Liu J et al. Microgroove etching with femtosecond laser on quartz glass surfaces[J]. Acta Optica Sinica, 40, 2314001(2020).

    [62] Liang J G, Ni X C, Yang L et al. Numerical simulation of the ablation on copper with ultrashort laser pulses[J]. Chinese Journal of Lasers, 32, 1291-1294(2005).

    [63] Kotsedi L, Kaviyarasu K, Fuku X G et al. Two-temperature approach to femtosecond laser oxidation of molybdenum and morphological study[J]. Applied Surface Science, 421, 213-219(2017).

    [64] Saghebfar M, Tehrani M K, Darbani S M R et al. Femtosecond pulse laser irradiation of gold/chromium double-layer metal film: the role of interface boundary resistance in two-temperature model simulations[J]. Thin Solid Films, 636, 464-473(2017).

    [65] Giordano S, Manca F. Analysis of heterogeneous structures described by the two-temperature model[J]. International Journal of Heat and Mass Transfer, 78, 189-202(2014).

    [66] Hu D Z. Numerical calculation of the electron-phonon coupling relaxation time in pulse laser ablation[J]. Acta Physica Sinica, 58, 1077-1082(2009).

    [67] Wu B X, Shin Y C. A simple model for high fluence ultra-short pulsed laser metal ablation[J]. Applied Surface Science, 253, 4079-4084(2007).

    [68] Tsai H L, Jiang L. Fundamentals of energy cascade during ultrashort laser-material interactions[J]. Proceedings of SPIE, 5713, 343-357(2005).

    [69] Wu B, Shin Y C. A simplified predictive model for high-fluence ultra-short pulsed laser ablation of semiconductors and dielectrics[J]. Applied Surface Science, 255, 4996-5002(2009).

    [70] Nanev C N. Theory of nucleation[M]. Nanev C N, 315-358(2015).

    [71] Hertel T, Knoesel E, Wolf M et al. Ultrafast electron dynamics at Cu(111): response of an electron gas to optical excitation[J]. Physical Review Letters, 76, 535-538(1996).

    [72] Brorson S D, Kazeroonian A, Moodera J S et al. Femtosecond room-temperature measurement of the electron-phonon coupling constant γ in metallic superconductors[J]. Physical Review Letters, 64, 2172-2175(1990).

    [73] Qiu T Q, Juhasz T, Suarez C et al. Femtosecond laser heating of multi-layer metals: experiments[J]. International Journal of Heat and Mass Transfer, 37, 2799-2808(1994).

    [74] Atanasov P A, Nedialkov N N, Imamova S E et al. Laser ablation of Ni by ultrashort pulses: molecular dynamics simulation[J]. Applied Surface Science, 186, 369-373(2002).

    [75] Nedialkov N N, Imamova S E, Atanasov P A et al. Mechanism of ultrashort laser ablation of metals: molecular dynamics simulation[J]. Applied Surface Science, 247, 243-248(2005).

    [76] Nedialkov N N, Atanasov P A, Amoruso S et al. Laser ablation of metals by femtosecond pulses: theoretical and experimental study[J]. Applied Surface Science, 253, 7761-7766(2007).

    [77] Daw M S, Baskes M I. Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals[J]. Physical Review B, 29, 6443-6453(1984).

    [78] Hakkinen H, Landman U. Superheating, melting, and annealing of copper surfaces[J]. Physical Review Letters, 71, 1023-1026(1993).

    [79] Zhang J C, Wang X Y, Zhu Y Y et al. Molecular dynamics simulation of the melting behavior of copper nanorod[J]. Computational Materials Science, 143, 248-254(2018).

    [80] Blaisten-Barojas E, Andersen H C. Effects of three-body interactions on the structure of clusters[J]. Surface Science, 156, 548-555(1985).

    [81] Honeycutt J D, Andersen H C. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters[J]. The Journal of Physical Chemistry, 91, 4950-4963(1987).

    [82] Jónsson H, Andersen H C. Icosahedral ordering in the Lennard-Jones liquid and glass[J]. Physical Review Letters, 60, 2295-2298(1988).

    [83] Faken D, Jónsson H. Systematic analysis of local atomic structure combined with 3D computer graphics[J]. Computational Materials Science, 2, 279-286(1994).

    [84] Barnett R N, Cleveland C L, Häkkinen H et al. Structures and spectra of gold nanoclusters and quantum dot molecules[J]. The European Physical Journal, 9, 95-104(1999).

    [85] Xiong Q L, Kitamura T, Li Z H. Transient phase transitions in single-crystal coppers under ultrafast lasers induced shock compression: a molecular dynamics study[J]. Journal of Applied Physics, 125, 194302(2019).

    [86] Ohmura E, Fukumoto I, Miyamoto I. Modified molecular dynamics simulation on ultrafast laser ablation of metal[C], 5059306(1999).

    [87] Karim E T, Lin Z B, Zhigilei L V. Molecular dynamics study of femtosecond laser interactions with Cr targets[J]. AIP Conference Proceedings, 1464, 280-293(2012).

    [88] Xin J T, Zhu W J, Liu C L. Molecular dynamics simulation of radiation effects in Al foil irradiated by femtosecond laser beams[J]. Explosion and Shock Waves, 24, 207-211(2004).

    [89] Feng Q Y, Li L, Zeng T Q et al. Ab initio molecular dynamics simulation of the effect of impurities on laser-induced damage of fused silica[J]. Physica B: Condensed Matter, 545, 549-558(2018).

    [90] Meng B B, Yuan D D, Zheng J et al. Molecular dynamics study on femtosecond laser aided machining of monocrystalline silicon carbide[J]. Materials Science in Semiconductor Processing, 101, 1-9(2019).

    [91] Povarnitsyn M E, Fokin V B, Levashov P R. Microscopic and macroscopic modeling of femtosecond laser ablation of metals[J]. Applied Surface Science, 357, 1150-1156(2015).

    [92] Zhu S J, Wang X L, Zhu W H et al. Numerical simulation for influence of pulse duration on femtosecond laser ablation of alloy[J]. Electro-Optic Technology Application, 26, 39-44(2011).

    [93] Liu X, Wang Y, Zhao L J. Molecular dynamics simulation on femtosecond laser ablation of metal[J]. Microfabrication Technology, 56-63(2004).

    [94] Zarkadoula E, Samolyuk G, Weber W J. Two-temperature model in molecular dynamics simulations of cascades in Ni-based alloys[J]. Journal of Alloys and Compounds, 700, 106-112(2017).

    [95] Darkins R, Duffy D M. Modelling radiation effects in solids with two-temperature molecular dynamics[J]. Computational Materials Science, 147, 145-153(2018).

    [96] Yong G. Coupling of material point method and molecular dynamics for modeling ultrafast laser interaction with metals[J]. Engineering Analysis with Boundary Elements, 110, 104-111(2020).

    [97] Wang J L, Liu T Y, Zhang C H. Efficient local implicit contact algorithm for material point method[J]. Journal of Tsinghua University (Natural Science), 344-347(2008).

    Xuefeng Wu, Sanlin Mei. Research Progress in Femtosecond Laser Machining Mechanism and Simulation Analysis[J]. Laser & Optoelectronics Progress, 2021, 58(19): 1900005
    Download Citation