• Journal of Inorganic Materials
  • Vol. 35, Issue 11, 1263 (2020)
Haoyu CHEN, Yiwen ZHANG*, Zhong WU, Zhenbo QIN, Shanshan WU, and Wenbin HU
Author Affiliations
  • School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.15541/jim20200020 Cite this Article
    Haoyu CHEN, Yiwen ZHANG, Zhong WU, Zhenbo QIN, Shanshan WU, Wenbin HU. Room Temperature Magnetoresistance Property of Co-TiO2 Nanocomposite Film Prepared by Strong Magnetic Target Co-sputtering[J]. Journal of Inorganic Materials, 2020, 35(11): 1263 Copy Citation Text show less
    References

    [1] H BUTLER W, G ZHANG X, C SCHULTHESS T et al. Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches. Physical Review B, 63, 054416(2001).

    [2] M DEAC A, A FUKUSHIMA, H KUBOTA et al. Bias-driven high-power microwave emission from MgO-based tunnel magnetoresistance devices. Nature Physics, 4, 803(2008).

    [3] C BLACK JR W, B DAS. Programmable logic using giant- magnetoresistance and spin-dependent tunneling devices. Journal of Applied Physics, 87, 6674-6679(2000).

    [4] L PENG Z, Y LI Z, Q HU et al. Anisotropic magnetoresistance and size effect of (Ni0.81Fe0.19)0.66Cr0.34/Ni0.81Fe0.19 thin films. Journal of Inorganic Materials, 17, 321-325(2002).

    [5] B DOKUKIN E, V ERHAN R, K ISLAMOV A et al. Formation of the magnetic fractal structure in Co-SiO2 granular nanocomposite system at percolation threshold. Physica Status Solidi, 250, 1656-1662(2013).

    [6] F TIAN Y, S YAN, P ZHANG Y et al. Transformation of electrical transport from variable range hopping to hard gap resistance in Zn1-xFexO1-v magnetic semiconductor films. Journal of Applied Physics, 100, 103901(2006).

    [7] M BHUTTA K, G REISS. Magnetoresistance and transport properties of CoFeB/MgO granular systems. Journal of Applied Physics, 107, 113718(2010).

    [8] Y CAO, A UMETSU, N KOBAYASHI et al. Tunable frequency response of tunnel-type magneto-dielectric effect in Co-MgF2 granular films with different content of Co. Applied Physics Letters, 111, 122901(2017).

    [9] Y CAO, W ZHANG Y, S OHNUMA et al. Magnetic properties and thermal stability of Co/HfN multilayer films for high- frequency application. AIP Advances, 7, 065202(2017).

    [10] Y ZHANG, H KIJIMA, N KOBAYASHI et al. Structure and high-frequency soft-magnetic properties of Co-TiN nano- composite films. Journal of the Ceramic Society of Japan, 121, 36-39(2013).

    [11] T CUI Y, S WANG J, Y LI H. Study on synthesis in situ and photocatalytic activity of TiO2 nanotubes array films. Journal of Inorganic Materials, 23, 1259-1262(2008).

    [12] X WANG, B LI, L ZHOU et al. Influence of surface structures on biocompatibility of TiO2/HA coatings prepared by MAO. Materials Chemistry and Physics, 215, 339-345(2018).

    [13] P BHATTARAI D, S SHRESTHA, K SHRESTHA B et al. A controlled surface geometry of polyaniline doped titania nanotubes biointerface for accelerating MC3T3-E1 cells growth in bone tissue engineering. Chemical Engineering Journal, 350, 57-68(2018).

    [14] W JIANG, H CUI, Y SONG. Electrochemical corrosion behaviors of titanium covered by various TiO2 nanotube films in artificial saliva. Journal of Materials Science, 53, 15130-15141(2018).

    [15] F WAN, H AN, T HARUMOTO et al. Temperature-dependent magnetotransport of Co-Ti-O nanocomposite films. Journal of Physics D: Applied Physics, 52, 135302(2019).

    [16] Q SONG H, M MEI L, S YAN S et al. Microstructure, ferromagnetism, and magnetic transport of Ti1-xCoxO2 amorphous magnetic semiconductor. Journal of Applied Physics, 99, 123903(2006).

    [17] Y WANG, H ZHANG, L WANG et al. Compositional dependence of magnetic and high frequency properties of nanogranular FeCo-TiO2 films. Journal of Applied Physics, 115, 17A306(2014).

    [18] Y ZHANG, N KOBAYASHI, S OHNUMA et al. Structure, magnetic and dielectric properties of BaTiO3-Co multi-layer nano-composite films. Journal of Magnetism and Magnetic Materials, 401, 925-928(2016).

    [19] K KOLLBEK, M SIKORA, C KAPUSTA et al. X-ray spectroscopic methods in the studies of nonstoichiometric TiO2-x thin films. Applied Surface Science, 281, 100-104(2013).

    [20] J LI, J WANG, D WANG et al. Band gap engineering of titania film through cobalt regulation for oxidative damage of bacterial respiration and viability. ACS Applied Materials & Interfaces, 9, 27475-27490(2017).

    [21] A CHANDA, K ROUT, M VASUNDHARA et al. Structural and magnetic study of undoped and cobalt doped TiO2 nanoparticles. RSC Advances, 8, 10939-10947(2018).

    [22] F MOTT N. The Electrical Conductivity of Transition Metals. Proceedings of the Royal Society of London. Series A-Mathematical and. Physical Sciences, 153, 699-717(1936).

    Haoyu CHEN, Yiwen ZHANG, Zhong WU, Zhenbo QIN, Shanshan WU, Wenbin HU. Room Temperature Magnetoresistance Property of Co-TiO2 Nanocomposite Film Prepared by Strong Magnetic Target Co-sputtering[J]. Journal of Inorganic Materials, 2020, 35(11): 1263
    Download Citation