• Photonics Research
  • Vol. 12, Issue 5, 876 (2024)
Qiaozhi He1、2, Rongjun Shao1, Yuan Qu1、2, Linxian Liu1、3, Chunxu Ding1, and Jiamiao Yang1、2、*
Author Affiliations
  • 1School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, China
  • 3School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
  • show less
    DOI: 10.1364/PRJ.513519 Cite this Article Set citation alerts
    Qiaozhi He, Rongjun Shao, Yuan Qu, Linxian Liu, Chunxu Ding, Jiamiao Yang. Complex transmission matrix retrieval for a highly scattering medium via regional phase differentiation[J]. Photonics Research, 2024, 12(5): 876 Copy Citation Text show less
    References

    [1] H. Yu, J. Park, K. Lee. Recent advances in wavefront shaping techniques for biomedical applications. Curr. Appl. Phys., 15, 632-641(2015).

    [2] S. Gigan, O. Katz, H. B. De Aguiar. Roadmap on wavefront shaping and deep imaging in complex media. J. Phys., 4, 042501(2022).

    [3] S. Yoon, M. Kim, M. Jang. Deep optical imaging within complex scattering media. Nat. Rev. Phys., 2, 141-158(2020).

    [4] J. Yang, Q. He, L. Liu. Anti-scattering light focusing by fast wavefront shaping based on multi-pixel encoded digital-micromirror device. Light Sci. Appl., 10, 149(2021).

    [5] P. Lai, L. Wang, J. W. Tay. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media. Nat. Photonics, 9, 126-132(2015).

    [6] M. Nixon, O. Katz, E. Small. Real-time wavefront shaping through scattering media by all-optical feedback. Nat. Photonics, 7, 919-924(2013).

    [7] L. Liu, C. Ding, Y. Qu. Anti-scattering light focusing by full-polarization wavefront shaping based on digital micromirror devices. Appl. Phys. Express, 15, 092001(2022).

    [8] R. Horisaki, R. Takagi, J. Tanida. Learning-based imaging through scattering media. Opt. Express, 24, 13738-13743(2016).

    [9] L. Gong, Q. Zhao, H. Zhang. Optical orbital-angular-momentum-multiplexed data transmission under high scattering. Light Sci. Appl., 8, 27(2019).

    [10] I. M. Vellekoop, A. Mosk. Focusing coherent light through opaque strongly scattering media. Opt. Lett., 32, 2309-2311(2007).

    [11] S. M. Popoff, G. Lerosey, R. Carminati. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett., 104, 100601(2010).

    [12] M. Kim, W. Choi, Y. Choi. Transmission matrix of a scattering medium and its applications in biophotonics. Opt. Express, 23, 12648-12668(2015).

    [13] J. Yoon, K. Lee, J. Park. Measuring optical transmission matrices by wavefront shaping. Opt. Express, 23, 10158-10167(2015).

    [14] I. M. Vellekoop. Feedback-based wavefront shaping. Opt. Express, 23, 12189-12206(2015).

    [15] A. Boniface, J. Dong, S. Gigan. Non-invasive focusing and imaging in scattering media with a fluorescence-based transmission matrix. Nat. Commun., 11, 6154(2020).

    [16] S. Tripathi, R. Paxman, T. Bifano. Vector transmission matrix for the polarization behavior of light propagation in highly scattering media. Opt. Express, 20, 16067-16076(2012).

    [17] H. B. de Aguiar, S. Gigan, S. Brasselet. Enhanced nonlinear imaging through scattering media using transmission-matrix-based wave-front shaping. Phys. Rev. A, 94, 043830(2016).

    [18] M. Mounaix, D. M. Ta, S. Gigan. Transmission matrix approaches for nonlinear fluorescence excitation through multiple scattering media. Opt. Lett., 43, 2831-2834(2018).

    [19] Q. Zhao, S. Tu, Q. Lei. Creation of cylindrical vector beams through highly anisotropic scattering media with a single scalar transmission matrix calibration. Photon. Res., 10, 1617-1623(2022).

    [20] Y. Choi, T. D. Yang, C. Fang-Yen. Overcoming the diffraction limit using multiple light scattering in a highly disordered medium. Phys. Rev. Lett., 107, 023902(2011).

    [21] A. K. Singh, D. N. Naik, G. Pedrini. Exploiting scattering media for exploring 3D objects. Light Sci. Appl., 6, e16219(2017).

    [22] J. Yang, L. S. Li, Q. He. An ultrahigh-fidelity 3D holographic display using scattering to homogenize the angular spectrum. Sci. Adv., 9, eadi9987(2023).

    [23] J. Dong, M. Rafayelyan, F. Krzakala. Optical reservoir computing using multiple light scattering for chaotic systems prediction. IEEE J. Sel. Top. Quantum Electron., 26, 7701012(2019).

    [24] M. Rafayelyan, J. Dong, Y. Tan. Large-scale optical reservoir computing for spatiotemporal chaotic systems prediction. Phys. Rev. X, 10, 041037(2020).

    [25] T. Bu, H. Zhang, S. Kumar. Efficient optical reservoir computing for parallel data processing. Opt. Lett., 47, 3784-3787(2022).

    [26] B. Redding, S. F. Liew, R. Sarma. Compact spectrometer based on a disordered photonic chip. Nat. Photonics, 7, 746-751(2013).

    [27] T. W. Kohlgraf-Owens, A. Dogariu. Transmission matrices of random media: means for spectral polarimetric measurements. Opt. Lett., 35, 2236-2238(2010).

    [28] J. Xu, H. Ruan, Y. Liu. Focusing light through scattering media by transmission matrix inversion. Opt. Express, 25, 27234-27246(2017).

    [29] A. Drémeau, A. Liutkus, D. Martina. Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques. Opt. Express, 23, 11898-11911(2015).

    [30] T. Chaigne, O. Katz, A. C. Boccara. Controlling light in scattering media non-invasively using the photoacoustic transmission matrix. Nat. Photonics, 8, 58-64(2014).

    [31] A. M. Caravaca-Aguirre, E. Niv, D. B. Conkey. Real-time resilient focusing through a bending multimode fiber. Opt. Express, 21, 12881-12887(2013).

    [32] O. Tzang, E. Niv, S. Singh. Wavefront shaping in complex media with a 350 kHz modulator via a 1D-to-2D transform. Nat. Photonics, 13, 788-793(2019).

    [33] L. Deng, J. D. Yan, D. S. Elson. Characterization of an imaging multimode optical fiber using a digital micro-mirror device based single-beam system. Opt. Express, 26, 18436-18447(2018).

    [34] G. Huang, D. Wu, J. Luo. Generalizing the Gerchberg–Saxton algorithm for retrieving complex optical transmission matrices. Photon. Res., 9, 34-42(2021).

    [35] M. N’Gom, T. B. Norris, E. Michielssen. Mode control in a multimode fiber through acquiring its transmission matrix from a reference-less optical system. Opt. Lett., 43, 419-422(2018).

    [36] G. Huang, D. Wu, J. Luo. Retrieving the optical transmission matrix of a multimode fiber using the extended Kalman filter. Opt. Express, 28, 9487-9500(2020).

    [37] C. A. Metzler, M. K. Sharma, S. Nagesh. Coherent inverse scattering via transmission matrices: efficient phase retrieval algorithms and a public dataset. IEEE International Conference on Computational Photography (ICCP), 1-16(2017).

    [38] P. M. Pelz, H. G. Brown, S. Stonemeyer. Phase-contrast imaging of multiply-scattering extended objects at atomic resolution by reconstruction of the scattering matrix. Phys. Rev. Res., 3, 023159(2021).

    [39] S. Rotter, S. Gigan. Light fields in complex media: mesoscopic scattering meets wave control. Rev. Mod. Phys., 89, 015005(2017).

    [40] S. Li, C. Saunders, D. J. Lum. Compressively sampling the optical transmission matrix of a multimode fibre. Light Sci. Appl., 10, 88(2021).

    [41] D. Dudley, W. M. Duncan, J. Slaughter. Emerging digital micromirror device (DMD) applications. Proc. SPIE, 4985, 14-25(2003).

    [42] C. Guo, C. Wei, J. Tan. A review of iterative phase retrieval for measurement and encryption. Opt. Laser Eng., 89, 2-12(2017).

    [43] J. R. Fienup. Phase retrieval algorithms: a comparison. Appl. Opt., 21, 2758-2769(1982).

    [44] J. W. Goodman. Speckle Phenomena in Optics: Theory and Applications(2007).

    [45] I. M. Vellekoop, A. Mosk. Phase control algorithms for focusing light through turbid media. Opt. Commun., 281, 3071-3080(2008).

    Qiaozhi He, Rongjun Shao, Yuan Qu, Linxian Liu, Chunxu Ding, Jiamiao Yang. Complex transmission matrix retrieval for a highly scattering medium via regional phase differentiation[J]. Photonics Research, 2024, 12(5): 876
    Download Citation