• Chinese Journal of Quantum Electronics
  • Vol. 38, Issue 2, 228 (2021)
Yan WANG1、2, Wen LI1、3, and Dongfeng XUE4、5
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • 5[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2021.02.011 Cite this Article
    WANG Yan, LI Wen, XUE Dongfeng. The latest research progress of rare earth optical crystals[J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 228 Copy Citation Text show less
    References

    [1] National Standardization Technical Committee. Quantities and units: GB/T 39131-2020[S]. Beijing: China Standard Press, 2020.

    [2] Wang Y, Sun C T, Zhang W, et al. Rare earth crystal materials and their applications[J]. Journal of Technology, 2019, 19(1): 1-13.

    [3] Xu L L, Sun C T, Xue D F. Recent advances in rare earth crystals[J]. Journal of the Chinese Society of Rare Earths, 2018, 36(1): 1-17.

    [4] Sun C T, Xue D F. Study on the crystallization process of function inorganic crystal materials[J]. Scientia Sinica Technologica, 2014, 44(11): 1123-1136.

    [5] Chen K F, Hu J L, Zhang Y B, et al. Current R&D status and future trends of rare earth crystal materials[J]. Inorganic Chemicals Industry, 2020, 52(3): 11-16.

    [6] Hu J L, Xue D F. Research progress on the characteristics of rare earth ions and rare earth functional materials[J]. Chinese Journal of Applied Chemistry, 2020, 37(3): 245-255.

    [7] Sun C T, Li K Y, Xue D F. Searching for novel materials via 4f chemistry[J]. Journal of Rare Earths, 2019, 37(1): 1-10.

    [8] Xue D F, Sun C T, Chen X Y. Hybridized valence electrons of 4f0-145d0-16s2: The chemical bonding nature of rare earth elements[J]. Journal of Rare Earths, 2017, 35(9): 837-843.

    [9] Li K Y, Xue D F. Estimation of electronegativity values of elements in different valence states[J]. Journal of Physical Chemistry A, 2006, 110(39): 11332-11337.

    [10] Li Z, Yuan Y J. Mode-locked Nd:YAG laser pumped by LD[J] . Chinese Journal of Quantum Electronics, 2011, 28(3): 298-302.

    [11] Gao J Y, Zhang Q L, Hu L S, et al. Energy levels and crystal-field calculation for Nd3+ in Gd3Ga5O12 single crystal[J]. Chinese Journal of Quantum Electronics, 2011, 28(2): 218-229.

    [12] Li J H, Wang S H, Nie Y, et al. Optical absorption properties for Nd:YVO4 laser crystals near 808 nm wavelength[J]. Chinese Journal of Quantum Electronics, 2014, 31(2): 154-159.

    [13] Yang X D, Chen X B, Chen L, et al. Progress in near-infrared quantum cutting of Tb3+-Yb3+ ion pair[J]. Chinese Journal of Quantum Electronics, 2014, 31(4): 466-471.

    [14] Ning K J, Zhang Q L, Sun D L, et al. Preparation, structure and spectral properties for Yb3+:GdGaGe2O7[J]. Chinese Journal of Quantum Electronics, 2011, 28(2): 234-240.

    [15] Yang J M, Liu D H, Liu J. Thermal effects of Yb3+:Y2SiO5 lasers[J]. Chinese Journal of Quantum Electronics, 2013, 30(3): 293-297.

    [16] Nuernisha Alifu, Jin C J. LSPR-enhanced upconversion luminescence of NaYF4:Yb, Er nanoparticles and its application[J]. Chinese Journal of Quantum Electronics, 2013, 30(6): 641-650.

    [17] Zhao H Y, Yi Y T, Wang X, et al. Triple-wavelength lasing at 1.50 μm, 1.84 μm and 2.08 μm in a Ho3+/Tm3+ co-doped fluorozirconate glass microsphere[J]. Journal of Luminescence, 2019, 219: 116889.

    [18] Hu M Y, Wang Y, You Z Y, et al. Influence of codoped Gd3+ ions on the spectroscopic site symmetry of Dy3+ ions in LaF3 single crystals[J]. Journal of Materials Chemistry C, 2019, 7(43): 13432-13439.

    [19] Hu M Y, Wang Y, Zhu Z J, et al. Investigation of mid-IR luminescence properties in Dy3+/Tm3+-codoped LaF3 single crystals[J]. Journal of Luminescence, 2019, 207: 226-230.

    [20] Ma M J, Ye B, Ma X M, et al. Electro-optically Q-switched 2.94 μm Er:YAG laser and its applications[J]. Chinese Journal of Quantum Electronics, 2010, 27(6): 688-692.

    [21] Wei H B, Guo Q, Zhu C J, et al. Characterization of Er3+ 2.79 μm rotating mirror Q-switched laser[J]. Chinese Journal of Quantum Electronics, 2014, 31(5): 563-568.

    [22] Huang L, Guo Q, Luo J Q, et al. Spectroscopic properties analysis and laser characteristic simulation of Er:GSGG crytsal[J]. Chinese Journal of Quantum Electronics, 2012, 29(1): 45-51.

    [23] Zhou P Y, Zhang Q L, Ning K J, et al. Preparation, structual and spectral properties of LaLu0.7Er0.3O3 polycrystalline[J]. Chinese Journal of Quantum Electronics, 2013, 30(2): 162-168.

    [24] Hu J L, Wang H L, Liang X T, et al. Progress of multiscale materials crystallization[J]. Scientia Sinica Technologica, 2020, 50(6): 650-666.

    [25] Sun C T, Xue D F. Perspectives of multiscale rare earth crystal materials[J]. CrystEngComm, 2019, 21: 1838.

    [26] Sun C T, Xue D F. Crystal growth: An anisotropic mass transfer process at the interface[J]. Physical Chemistry Chemical Physics, 2017, 19: 12407-12413.

    [27] Ye X Y, Luo Y, Liu S B, et al. Experimental study and thermodynamic calculation of Lu2O3-SiO2 binary system[J]. Journal of Rare Earths, 2017, 35(9): 927-933.

    [28] Tu C Y, Zhu Z J, Li J F, et al. GdAl3(BO3)4 and its Nd-activated ion doped frequency-doubled and self-converting laser crystal[J]. Journal of Synthetic Crystals, 2019, 48(10): 1843-1853.

    [29] Sastry B S R, Hummel F A. Studies in lithium oxide systems: I Li2O-Li2O·B2O3[J]. Journal of the American Ceramic Society, 2010, 42(5): 216-218.

    [30] Tu H, Hu Z G, Zhao Y, et al. Growth of large aperture LBO crystal applied in high power OPCPA schemes[J]. Journal of Crystal Growth, 2020, 546: 125728.

    [31] Lian Y S, Wang Y, Li J F, et al. Structural and fluorescence features of Dy3+:Y4Al2O9 phosphors for yellow color emitting displays[J]. Vacuum, 2020, 173: 109165.

    [32] Cai X Y, Wang Y, Li J F, et al. Crystal growth and spectroscopic investigations of Dy:YAlO3 and Dy, Tm:YAlO3 crystals for 3 μm laser application[J]. Journal of Luminescence, 2020, 225: 117328.

    [33] Cai X Y, Wang Y, Li J F, et al. Enhanced broadband 3 μm emission in Yb3+/Dy3+:YAlO3 crystal under 979 nm excitation[J]. Vacuum, 2020, 181: 109647.

    [34] Olga F, Hans J, Thomas L, et al. The assessment of thermodynamic parameters in the Al2O3-Y2O3 system and phase relations in the Y-Al-O system[J]. Scandinavian Journal of Metallurgy, 2001, 30: 175-183.

    [35] Xue D F. Design and simulation of crystal materials[J]. Journal of Synthetic Crystals, 2007, 36(4): 743-749.

    [36] Sun C T, Xue D F. Chemical bonding theory of single crystal growth and its application to fast single crystal growth of rare earth inorganic materials[J]. Scientia Sinica Chimica, 2018, 48(8): 804-814.

    [37] Xue D F, Sun C T. The growth of low-cost rare-earth scintillation crystals[P]. China Patent: CN105714374A, 2016.

    [38] Xue D F, Sun C T. Rare earth scintillation crystal prepared by using low cost rare earth material and its low cost growth process[P]. China Patent: CN105543963A, 2016.

    [39] Sun C T, Xue D F. Chemical bonding theory of single crystal growth and its application to φ3′′ YAG bulk crystal[J]. CrystEngComm, 2014, 16: 2129-2135.

    [40] Yang G L, Han J F, Li X W, et al. Growth of 8 inch Yb:YAG single crystal by Czochralski method[J]. Journal of Synthetic Crystals, 2019, 48(7): 1216-1217.

    [41] Li N, Liu B, Shi J J, et al. Research progress of rare-earth doped laser crystals in visible region[J]. Journal of Inorganic Materials, 2019, 34(6): 573-589.

    [42] Yu H. Investigation on Spectral Properties and Visible Laser Performance of Re (Pr, Eu, Dy) Doped Calcium Fluoride Crystals[D]. Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences, 2019.

    [43] Zhang Y X. Exploration of Pr3+ Ion Doped Laser Crystals and Their Pulse Laser Characterization Pumped by Blue Semiconductor[D]. Jinan: Shandong University, 2019.

    [44] Ju Q J, Shen H, Yao W M, et al. Laser diode pumped Dy:YAG yellow laser[J]. Chinese Journal of Laser, 2017, 44(4): 23-28.

    [45] Li C L, Yao W M, Chen J S, et al. All-solid-state yellow-laser characteristics based on co-doped Dy-Tb:YAG crystal[J]. Chinese Journal of Laser, 2019, 46(11): 61-66.

    [46] Nie H K. Study on 3 μm Band Laser Characteristics of Ho3+, Pr3+ Co-doped Fluoride Crystal[D]. Jinan: Shandong University, 2020.

    [47] Zhang P X, Li S M, Yang Y L, et al. Growth and performance optimization of mid-infrared fluoride laser crystal[J]. Journal of Synthetic Crystals, 2020, 49(8): 1369-1378.

    [48] Tao X T, Wang S P, Wang L, et al. Research in crystal materials: From bulk crystals to micro-nano crystals[J]. Journal of Synthetic Crystals, 2019, 48(5): 763-786.

    [49] Ren G H. Development history of inorganic scintillation crystals in China[J]. Journal of Synthetic Crystals, 2019, 48(8): 1373-1385.

    [50] Zhang M R. Research status and development trend of non-fluorinated halide scintillation crystals[J]. Journal of Synthetic Crystals, 2020, 49(5): 753-770.

    [51] Meng M, Qi Q, He C J, et al. Influence of defects on the luminescence properties of Gd3(Al, Ga)5O12:Ce scintillation crystals[J]. Acta Physical Sinica, DOI: 10.7498/aps.70.20201697

    [52] Shinozaki K, Okada G, Sato K, et al. Impact of crystallization method on the strain, defect formation, and thermoluminescence of YAG:Ce crystals[J]. Journal of Alloys Compounds, 2020, 849: 156600.

    [53] Lee S, Kim K Y, Lee M S, et al. Recovery of inter-detector and inter-crystal scattering in brain PET based on LSO and GAGG crystals[J]. Physics in Medicine & Biology, 2020, 65(19): 195005.

    [54] Wang Q Q, Shi J, Li H Y, et al. Optical and scintillation properties of Cs2LiYCl6:Ce crystal[J]. Journal of Inorganic Materials, 2017, 32(2): 175-179.

    [55] Wang S H, Wu Y T, Li H Y, et al. Effect of Ce3+ doping concentration on scintillation performance of Cs2LiYCl6 crystal[J]. Journal of the Chinese Society of Rare Earths, 2020, 38(6): 759-767.

    [56] Pan S K, Zhang P, Zhu H B, et al. Crystal growth, luminescence and scintillation properties of mixed Ce:Cs2LiLaxY1-xCl(0<x≤0.4) scintillators[J]. Journal of Luminescence, 2018, 201: 211-216.

    [57] Yu Y Y, Zhu H B, Wang H Y, et al. Growth and scintillation properties of RbY2Cl7:Ce crystal[J]. Journal of Synthetic Crystals, 2020, 49(5): 780-784.

    [58] Feofilov S P, Kulinkin A B. Anti-Stokes fluorescence of Cr3+ ions doped crystals excited in one-phonon vibronic sidebands[J]. Optical Materials, 2019, 94: 231-236.

    [59] Mobini E, Rostami S, Peysokhan M, et al. Laser cooling of ytterbium-doped silica glass[J]. Communications Physics, 2020, 3(1): 1-6.

    [60] Seletskiy D, Melgaard S, Bigotta S, et al. Laser cooling of solids to cryogenic temperatures[J]. Nature Photonics, 2010, 4(3): 161-164.

    [61] Rahman A T M A, Barker P F. Laser refrigeration, alignment and rotation of levitated Yb3+:YLF nanocrystals[J]. Nature Photonics, 2017, 11(10): 634-638.

    [62] Zhong B, Lei Y Q, Luo H, et al. Laser cooling of the Yb3+-doped LuLiF4 single crystal for optical refrigeration[J]. Journal of Luminescence, 2020, 226: 117472.

    [63] Loiko P, Doualan J L, Guillemot L, et al. Emission properties of Tm3+-doped CaF2, KY3F10, LiYF4, LiLuF4 and BaY2F8 crystals at 1.5 μm and 2.3 μm[J]. Journal of Luminescence, 2020, 225: 117279.

    [64] Wang J Q. Study on Photoluminescence Characteristics of High Brightness Solid-state Green Light[D]. Chongqing: Chongqing University, 2019.

    [65] Pan F L, Cao D H, Guo X C, et al. High-lumen-density light source based on Ce:YAG fluorescent crystal[J]. Laser & Optoelectronics Progress, 2019, 56(21): 188-193.

    [66] Hu P, Ding H, Liu Y F, et al. Recent progress of YAG:Ce3+ for white laser diode lighting application[J]. Chinese Journal of Luminescence, 2020, 41(12): 1504-1528.

    [67] LYU Q Y, Xue B G, Wang T T, et al. Research progress of YAG:Ce fluorescent films for white lighting[J]. Chinese Journal of Luminescence, 2020, 41(11): 1323-1334.

    [68] Zheng Z H, Zhang X, Xu X K, et al. Thickness and surface roughness effect on lighting performance of Ce3+:YAG transparent ceramics based high power LED and LD lighting prototype devices[J]. Chinese Journal of Luminescence, 2020, 41(11): 1411-1420.

    [69] Guo J Y, Tudi A, Han S J, et al. Sn2B5O9Cl: A material with large birefringence enhancement activated prepared via alkaline-earth-metal substitution by Tin[J]. Angewandte Chemie International Edition, 2019, 58(49): 1-5.

    CLP Journals

    [1] TONG Ye, ZHENG Yuhang, LIU Wenpeng, DING Shoujun. Synthesis and luminescent properties of Dy3+ and Eu3+ codoped NaY(MoO4)2 phosphors[J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 32

    WANG Yan, LI Wen, XUE Dongfeng. The latest research progress of rare earth optical crystals[J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 228
    Download Citation