• Laser & Optoelectronics Progress
  • Vol. 56, Issue 18, 181701 (2019)
Wenyan Li, Xing Wang, and Ying Liu*
Author Affiliations
  • Key Laboratory of Opt-Electronics Information Technology and Science of the Ministry of Education (Tianjin University), School of Science, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/LOP56.181701 Cite this Article Set citation alerts
    Wenyan Li, Xing Wang, Ying Liu. Scattering Parameter γ Related to Tissue Microstructure and Measuring Method[J]. Laser & Optoelectronics Progress, 2019, 56(18): 181701 Copy Citation Text show less
    References

    [1] Chen X, Lu J L, Li P C. Viscoelasticity measurement of biological tissues using laser speckle techniques: a review[J]. Chinese Journal of Lasers, 45, 0207005(2018).

    [2] Chen C J, Yang S H, Xing D. Progress and application of photoacoustic microscopy technique[J]. Chinese Journal of Lasers, 45, 0307008(2018).

    [3] Kong W, Gao F, Fan J Y et al. Application of confocal line scanning imaging technique in biomedical imaging[J]. Laser & Optoelectronics Progress, 55, 050003(2018).

    [4] Xing Y C, Zhu Q B, Huang M. Inversion of optical parameters of biological tissues based on improved standard diffusion approximation model[J]. Laser & Optoelectronics Progress, 53, 091701(2016).

    [5] Liu Y, Luo W Q, Wang R D et al. Sub-diffuse scattering of biological tissues and its application to spectroscopy[J]. Chinese Journal of Lasers, 44, 0807001(2017).

    [6] Wang X, Li W Y, Qiao Y Q et al. Method to quantitate parameter γ related to tissue microstructure by reflectance measured at microdomains close to the source[J]. Acta Optica Sinica, 47, 0917002(2018).

    [7] Cheong W F, Prahl S A, Welch A J. A review of the optical properties of biological tissues[J]. IEEE Journal of Quantum Electronics, 26, 2166-2185(1990). http://ieeexplore.ieee.org/iel1/3/2327/00064354.pdf

    [8] McClatchy D M, Rizzo E J, Wells W A et al. . Wide-field quantitative imaging of tissue microstructure using sub-diffuse spatial frequency domain imaging[J]. Optica, 3, 613-621(2016). http://pubmedcentralcanada.ca/pmcc/articles/PMC4989924/

    [9] van Leeuwen-van Zaane F, Gamm U A et al. . In vivo quantification of the scattering properties of tissue using multi-diameter single fiber reflectance spectroscopy[J]. Biomedical Optics Express, 4, 696-708(2013). http://europepmc.org/articles/PMC3646597

    [10] Bu M, Hu S S, Lu W et al. Numerical calculation and analysis of Mie scattering phase function of nucleated cells[J]. Chinese Journal of Lasers, 44, 0807003(2017).

    [11] Kanick S C. McClatchy D M, Krishnaswamy V, et al. Sub-diffusive scattering parameter maps recovered using wide-field high-frequency structured light imaging[J]. Biomedical Optics Express, 5, 3376-3390(2014).

    [12] Canpolat M, Mourant J R. High-angle scattering events strongly affect light collection in clinically relevant measurement geometries for light transport through tissue[J]. Physics in Medicine and Biology, 45, 1127-1140(2000). http://europepmc.org/abstract/MED/10843095

    [13] Liu Y, Zhang X J, Hu Y Z. Scattering phase function of biological tissue and the properties of second-order optical parameter[J]. Acta Optica Sinica, 24, 877-880(2004).

    [14] Bevilacqua F, Depeursinge C. Monte Carlo study of diffuse reflectance at source-detector separations close to one transport mean free path[J]. Journal of the Optical Society of America A, 16, 2935-2945(1999). http://www.opticsinfobase.org/abstract.cfm?uri=josaa-16-12-2935

    [15] Hull E L, Foster T H. Steady-state reflectance spectroscopy in the P3 approximation[J]. Journal of the Optical Society of America A, 18, 584-599(2001). http://www.opticsinfobase.org/abstract.cfm?uri=josaa-18-3-584

    [16] Ma Z, Liu Y, Lian G. Semi-empirical model for biological tissue diffuse reflectance measurement with small aperture[J]. Chinese Journal of Lasers, 42, 0304001(2015).

    [17] Zonios G, Dimou A. Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties[J]. Optics Express, 14, 8661-8674(2006). http://www.opticsinfobase.org/abstract.cfm?uri=oe-14-19-8661

    [18] Gamm U A, Kanick S C. Sterenborg H J C M, et al. Quantification of the reduced scattering coefficient and phase-function-dependent parameter γ of turbid media using multidiameter single fiber reflectance spectroscopy: experimental validation[J]. Optics Letters, 37, 1838-1840(2012).

    [19] Gao Z, Ma Z, Liu Y et al. Semi-empirical analytical mode with highorder parameter of the biological tissue optical diffuse reflectance[J]. Acta Physica Sinica, 63, 134208(2014).

    [20] Wang Q H, Zhang Y Y, Lai J C et al. Application of Mie theory in biological tissue scattering characteristics analysis[J]. Acta Physica Sinica, 56, 1203-1207(2007).

    [21] Tian H J, Liu Y, Wang L J. Influence of the third-order parameter on diffuse reflectance at small source-detector separations[J]. Optics Letters, 31, 933-935(2006). http://www.ncbi.nlm.nih.gov/pubmed/16599216

    [22] Marchesini R, Bertoni A, Andreola S et al. Extinction and absorption coefficients and scattering phase functions of human tissues in vitro[J]. Applied Optics, 28, 2318-2324(1989). http://www.opticsinfobase.org/ao/abstract.cfm?id=32502

    [23] Fried D, Glena R E. Featherstone J D B, et al. Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths[J]. Applied Optics, 34, 1278-1285(1995). http://europepmc.org/abstract/MED/21037659

    [24] Passos D, Hebden J C, Pinto P N et al. Tissue phantom for optical diagnostics based on a suspension of microspheres with a fractal size distribution[J]. Journal of Biomedical Optics, 10, 064036(2005). http://europepmc.org/abstract/MED/16409101

    Wenyan Li, Xing Wang, Ying Liu. Scattering Parameter γ Related to Tissue Microstructure and Measuring Method[J]. Laser & Optoelectronics Progress, 2019, 56(18): 181701
    Download Citation