• Chinese Journal of Quantum Electronics
  • Vol. 34, Issue 1, 54 (2017)
Jinsong HUANG*, Zhonghui XU, and Yangwan ZHONG
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2017.01.009 Cite this Article
    HUANG Jinsong, XU Zhonghui, ZHONG Yangwan. Quantum entanglement of two collocated atoms in a one-dimensional waveguide[J]. Chinese Journal of Quantum Electronics, 2017, 34(1): 54 Copy Citation Text show less
    References

    [1] Grover L K. Quantum mechanics helps in searching for a needle in a haystack[J]. Phys. Rev. Lett.,1997,79(2): 325-328.

    [2] Pereira S F, Ou Z Y, Kimble H J. Quantum communication with correlated nonclassical states[J]. Phys. Rev. A,2000,62(4): 042311.

    [3] Aspect A. Bell’s inequality test: More ideal than ever[J]. Nature, 1999, 398(6724): 189-190.

    [5] Julsgaard B, Kozhekin A, Polzik E S. Experimental long-lived entanglement of two macroscopic objects[J]. Nature, 2001, 413(6854): 400-403.

    [8] Turchette Q A, Wood C S, King B E, et al. Deterministic entanglement of two trapped ions[J]. Phys. Rev. Lett., 1998, 81(17): 3631-3634.

    [9] Blatt R, Wineland D. Entangled states of trapped atomic ions[J]. Nature, 2008, 453(7198): 1008-1015.

    [10] Stievater T H, Li X, Steel D G, et al. Rabi oscillations of excitons in single quantum dots[J]. Phys. Rev. Lett., 2001, 87(13): 133603.

    [11] Li X, Wu Y, Steel D G, et al. An all-optical quantum gate in a semiconductor quantum dot[J]. Science, 2003, 301(5634): 809-811.

    [13] Steffen M, Ansmann M, Bialczak R C, et al. Measurement of the entanglement of two superconducting qubits via state tomography[J]. Science, 2006, 313(5792): 1423-1425.

    [15] Shen J T, Fan S. Coherent photon transport from spontaneous emission in one-dimensional waveguides[J]. Opt. Lett., 2005, 30(15): 2001-2003.

    [16] Shen J T, Fan S. Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom[J]. Phys. Rev. A, 2009, 79(2): 023837.

    [17] Shen J T, Fan S. Theory of single-photon transport in a single-mode waveguide. II. Coupling to a whispering-gallery resonator containing a two-level atom[J]. Phys. Rev. A, 2009, 79(2): 023838.

    [18] Shen J T, Fan S. Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits[J]. Phys. Rev. Lett., 2005, 95(21): 213001.

    [19] Roy D. Two-photon scattering of a tightly focused weak light beam from a small atomic ensemble: An optical probe to detect atomic level structures[J]. Phys. Rev. A, 2013, 87(6): 063819.

    [20] Chen Y L, Xiao Y F, Zhou X X, et al. Single-photon transport in a transmission line resonator interacting with two capacitively coupled Cooper-pair boxes[J]. J. Phys. B: At. Mol. Opt. Phys., 2008, 41(17): 175503.

    [21] Yu X Y, Li J H. The effect of dipole-dipole interactions on the single-photon transmission spectrum[J]. Eur. Phys. J. D, 2013, 67(8): 177.

    [22] Zhou L, Gong Z R, Liu Y X, et al. Controllable scattering of a single photon inside a one-dimensional resonator waveguide[J]. Phys. Rev. Lett., 2008, 101(10): 100501.

    [23] Zhou L, Dong H, Liu Y X, et al. Quantum supercavity with atomic mirrors[J]. Phys. Rev. A, 2008, 78(6): 063827.

    [24] Liao J Q, Gong Z R, Zhou L, et al. Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities[J]. Phys. Rev. A, 2010, 81(4): 042304.

    [25] Gonzalez-Tudela A, Martin-Cano D, Moreno E, et al. Entanglement of two qubits mediated by one-dimensional plasmonic waveguides[J]. Phys. Rev. Lett., 2011, 10(2): 020501.

    [26] Chen G Y, Lambert N, Chou C H, et al. Surface plasmons in a metal nanowire coupled to colloidal quantum dots: Scattering properties and quantum entanglement[J]. Phys. Rev. B, 2011, 84(4): 045310.

    [27] Chen G Y, Chen Y N. Correspondence between entanglement and Fano resonance of surface plasmons[J]. Opt. Lett., 2012, 37(19): 4023-4025.

    [28] Cheng M T, Ma X S, Luo Y Q, et al. Entanglement generation and quantum state transfer between two quantum dot molecules mediated by quantum bus of plasmonic circuits[J]. Appl. Phys. Lett., 2011, 99(22): 223509-223511.

    [29] Chen G Y, Li C M, Chen Y N. Generating maximum entanglement under asymmetric couplings to surface plasmons[J]. Opt. Lett., 2012, 37(8): 1337-1339.

    [30] Chen Y N, Chen G Y, Chuu D S, et al. Quantum-dot exciton dynamics with a surface plasmon: Band-edge quantum optics[J]. Phys. Rev. A, 2009, 79(3): 033815.

    [31] Chen W, Chen G Y, et al. Coherent transport of nanowire surface plasmons coupled to quantum dots[J]. Opt. Expr., 2010, 18(10): 10360-10368.

    [32] Chen G Y, Liu M H, Chen Y N. Scattering of microwave photons in superconducting transmission-line resonators coupled to charge qubits[J]. Phys. Rev. A, 2014, 89(5): 053802.

    [33] Wootters W K. Entanglement of formation of an arbitrary state of two qubits[J]. Phys. Rev. Lett., 1998, 80(10): 2245-2248.

    HUANG Jinsong, XU Zhonghui, ZHONG Yangwan. Quantum entanglement of two collocated atoms in a one-dimensional waveguide[J]. Chinese Journal of Quantum Electronics, 2017, 34(1): 54
    Download Citation