• Journal of Innovative Optical Health Sciences
  • Vol. 14, Issue 6, 2130006 (2021)
Jinyan Sun1、*, Richong Pang2, Sisi Chen1, Hucheng Chen2, Yuanrong Xie2, Dandan Chen3, Kai Wu4, Jianbin Liang2, Kecheng Yan2, and Zhifeng Hao5
Author Affiliations
  • 1Department of Biomedical Engineering, School of Medicine Foshan University, Foshan 528000, P. R. China
  • 2Department of Electronic Information School of Mechatronic Engineering and Automation Foshan University, Foshan 528000, P. R. China
  • 3Seventh Affiliated Hospital, Sun Yat-Sen University Shenzhen 518107, P. R. China
  • 4Department of Biomedical Engineering School of Material Science and Engineering South China University of Technology Guangzhou 510006, P. R. China
  • 5School of Mathematics and Big Data Foshan University Foshan 528000, P. R. China
  • show less
    DOI: 10.1142/s1793545821300068 Cite this Article
    Jinyan Sun, Richong Pang, Sisi Chen, Hucheng Chen, Yuanrong Xie, Dandan Chen, Kai Wu, Jianbin Liang, Kecheng Yan, Zhifeng Hao. Near-infrared spectroscopy as a promising tool in stroke: Current applications and future perspectives[J]. Journal of Innovative Optical Health Sciences, 2021, 14(6): 2130006 Copy Citation Text show less
    References

    [1] "Global, regional, and national burden of stroke, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016," Lancet Neurol. 18, 439–458 (2019).

    [2] T. A. Schweizer, R. L. Macdonald, The Behavioral Consequences of Stroke, Springer, New York (2014).

    [3] C. Cirillo, N. Brihmat, E. Castel-Lacanal, A. Le Friec, M. Barbieux-Guillot, N. Raposo, J. Pariente, A. Viguier, M. Simonetta-Moreau, J. F. Albucher, J. M. Olivot, F. Desmoulin, P. Marque, F. Chollet, I. Loubinoux, "Post-stroke remodeling processes in animal models and humans," J. Cereb. Blood Flow Metab. 40, 3–22 (2019).

    [4] C. Grefkes, G. R. Fink, "Connectivity-based approaches in stroke and recovery of function," Lancet Neurol. 13, 206–216 (2014).

    [5] M. Yang, Z. Yang, T. Yuan,W. Feng, P. Wang, "A systemic review of functional near-infrared spectroscopy for stroke: Current application and future directions," Front. Neurol. 10, 58 (2019).

    [6] A. G. Guggisberg, P. J. Koch, F. C. Hummel, C. M. Buetefisch, "Brain networks and their relevance for stroke rehabilitation," Clin. Neurophysiol. 130, 1098–1124 (2019).

    [7] K. S. Hong, M. A. Yaqub, "Application of functional near-infrared spectroscopy in the healthcare industry: A review," J. Innov. Opt. Health Sci. 12, 1930012 (2019).

    [8] W. L. Chen, J. Wagner, N. Heugel, J. Sugar, Y. W. Lee, L. Conant, M. Malloy, J. Heffernan, B. Quirk, A. Zinos, S. A. Beardsley, R. Prost, H. T. Whelan, "Functional near-infrared spectroscopy and its clinical application in the field of neuroscience: Advances and future directions," Front. Neurosci. 14, 724 (2020).

    [9] F. F. J€obsis, "Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters," Science 198, 1264 (1977).

    [10] D. T. Delpy, M. Cope, "Quantification in tissue near-infrared spectroscopy," Philos. Trans. R. Soc. B, Biol. Sci. 352, 649–659 (1997).

    [11] M. Wolf, M. Ferrari, V. Quaresima, "Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications," J. Biomed. Opt. 12, 062104 (2007).

    [12] M. Ferrari, V. Quaresima, "A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application," Neuroimage 63, 921–935 (2012).

    [13] J. Sun, F. Liu, H. Wang, A. Yang, C. Gao, Z. Li, X. Li, "Connectivity properties in the prefrontal cortex during working memory: A near-infrared spectroscopy study," J. Biomed. Opt. 24, 051410 (2019).

    [14] T. Li, Q. Luo, H. Gong, "Gender-specific hemodynamics in prefrontal cortex during a verbal working memory task by near-infrared spectroscopy," Behav. Brain Res. 209, 148–153 (2010).

    [15] T. Li, Y. Li, Y. Lin, K. Li, "Significant and sustaining elevation of blood oxygen induced by Chinese cupping therapy as assessed by nearinfrared spectroscopy," Biomed. Opt. Express 8, 223–229 (2017).

    [16] B. Pan, C. Huang, X. Fang, X. Huang, T. Li, "Noninvasive and sensitive optical assessment of brain death," J. Biophoton. 12, e201800240 (2019).

    [17] G. Strangman, D. A. Boas, J. P. Sutton, "Noninvasive neuroimaging using near-infrared light," Biol. Psychiatry 52, 679–693 (2002).

    [18] S. Lloyd-Fox, A. Blasi, C. E. Elwell, "Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy," Neurosci. Biobehav. Rev. 34, 269–284 (2010).

    [19] A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, P. Fallon, L. Tyszczuk, M. Cope, D. T. Delpy, "Measurement of cranial optical path length as a function of age using phase resolved near infrared spectroscopy," Pediatr. Res. 39, 889–894 (1996).

    [20] H. Obrig, "NIRS in clinical neurology—a 'promising' tool?," Neuroimage 85, 535–546 (2014).

    [21] D. Zhang, M. E. Raichle, "Disease and the brain's dark energy," Nat. Rev. Neurol. 6, 15–28 (2010).

    [22] Z. Li, Y. Wang, Y. Li, J. Li, L. Zhang, "Wavelet analysis of cerebral oxygenation signal measured by near infrared spectroscopy in subjects with cerebral infarction," Microvasc. Res. 80, 142–147 (2010).

    [23] Z. Li, M. Zhang, Q. Xin, G. Chen, F. Liu, J. Li, "Spectral analysis of near-infrared spectroscopy signals measured from prefrontal lobe in subjects at risk for stroke," Med. Phys. 39, 2179–2185 (2012).

    [24] Q. Y. Han, M. Zhang, W. H. Li, Y. J. Gao, Q. Xin, Y. Wang, Z. Y. Li, "Wavelet coherence analysis of prefrontal tissue oxyhaemoglobin signals as measured using near-infrared spectroscopy in elderly subjects with cerebral infarction," Microvasc. Res. 95, 108–115 (2014).

    [25] Q. Han, Z. Li, Y. Gao, W. Li, Q. Xin, Q. Tan, M. Zhang, Y. Zhang, "Phase synchronization analysis of prefrontal tissue oxyhemoglobin oscillations in elderly subjects with cerebral infarction," Med. Phys. 41, 102702 (2014).

    [26] Q. Tan, M. Zhang, Y. Wang, Q. Xin, B. Wang, Z. Li, "Frequency-specific functional connectivity revealed by wavelet-based coherence analysis in elderly subjects with cerebral infarction using NIRS method," Med. Phys. 42, 5391–5403 (2015).

    [27] H. Su, C. Huo, B. Wang, W. Li, G. Xu, Q. Liu, Z. Li, "Alterations in the coupling functions between cerebral oxyhaemoglobin and arterial blood pressure signals in post-stroke subjects," PLoS One 13, e0195936 (2018).

    [28] Q. Liu, B. Wang, Y. Liu, Z. Lv, W. Li, Z. Li, Y. Fan, "Frequency-specific effective connectivity in subjects with cerebral infarction as revealed by NIRS method," Neuroscience 373, 169–181 (2018).

    [29] C. Huo, X. Li, J. Jing, Y. Ma, W. Li, Y. Wang, W. Liu, Y. Fan, S. Yue, Z. Li, "Median nerve electrical stimulation-induced changes in effective connectivity in patients with stroke as assessed with functional near-infrared spectroscopy," Neurorehabil. Neural Repair 33, 1008–1017 (2019).

    [30] H. Xie, G. Xu, C. Huo, W. Li, H. Zhao, Z. Lv, Z. Li, "Brain function changes induced by intermittent sequential pneumatic compression in patients with stroke as assessed by functional near-infrared spectroscopy," Phys. Ther. (2021).

    [31] K. M. Arun, K. A. Smitha, P. N. Sylaja, C. Kesavadas, "identifying resting-state functional connectivity changes in the motor cortex using fNIRS during recovery from stroke," Brain Topogr. 33, 710–719 (2020).

    [32] H. Saitou, H. Yanagi, S. Hara, S. Tsuchiya, S. Tomura, "Cerebral blood volume and oxygenation among poststroke hemiplegic patients: Effects of 13 rehabilitation tasks measured by near-infrared spectroscopy," Arch. Phys. Med. Rehabil. 81, 1348– 1356 (2000).

    [33] Y. Murata, K. Sakatani, Y. Katayama, C. Fukaya, "Increase in focal concentration of deoxyhaemoglobin during neuronal activity in cerebral ischaemic patients," J. Neurol. Neurosurg. Psychiatry 73, 182–184 (2002).

    [34] Y. Murata, K. Sakatani, T. Hoshino, N. Fujiwara, T. Kano, S. Nakamura, Y. Katayama, "Effects of cerebral ischemia on evoked cerebral blood oxygenation responses and BOLD contrast functional MRI in stroke patients," Stroke 37, 2514–2520 (2006).

    [35] A. K. Rehme, S. B. Eickho?, C. Rottschy, G. R. Fink, C. Grefkes, "Activation likelihood estimation meta-analysis of motor-related neural activity after stroke," Neuroimage 59, 2771–2782 (2012).

    [36] H. Kato et al., "Near-infrared spectroscopic topography as a tool to monitor motor reorganization after hemiparetic stroke: A comparison with functional MRI," Stroke 33, 2032–2036 (2002).

    [37] S. B. Lim, J. J. Eng, "Increased sensorimotor cortex activation with decreased motor performance during functional upper extremity tasks poststroke," J. Neurol. Phys. Ther. 43, 141–150 (2019).

    [38] K. Takeda, Y. Gomi, I. Imai, N. Shimoda, M. Hiwatari, H. Kato, "Shift of motor activation areas during recovery from hemiparesis after cerebral infarction: A longitudinal study with near-infrared spectroscopy," Neurosci. Res. 59, 136–144 (2007).

    [39] T. Sakurada, A. Goto, M. Tetsuka, T. Nakajima, M. Morita, S. I. Yamamoto, M. Hirai, K. Kawai, "Prefrontal activity predicts individual differences in optimal attentional strategy for preventing motor performance decline: A functional near-infrared spectroscopy study," Neurophotonics 6, 025012 (2019).

    [40] M. MasoudiMotlagh, J. J. Sugar, M. Azimipour, W. W. Linz, G. Michalak, N. J. Seo, M. Ranji, "Monitoring hemodynamic changes in stroke-affected muscles using near-infrared spectroscopy," J. Rehabil. Assist. Technol. Eng. 2, 2055668315614195 (2015).

    [41] I. Miyai, M. Suzuki, M. Hatakenaka, K. Kubota, "Effect of body weight support on cortical activation during gait in patients with stroke," Exp. Brain Res. 169, 85–91 (2006).

    [42] M. Mihara, I. Miyai, M. Hatakenaka, K. Kubota, S. Sakoda, "Sustained prefrontal activation during ataxic gait: A compensatory mechanism for ataxic stroke?," Neuroimage 37, 1338–1345 (2007).

    [43] M. Mihara, I. Miyai, N. Hattori, M. Hatakenaka, H. Yagura, T. Kawano, K. Kubota, "Cortical control of postural balance in patients with hemiplegic stroke," NeuroReport 23, 314–319 (2012).

    [44] M. Hatakenaka, I. Miyai, M. Mihara, H. Yagura, N. Hattori, "Impaired motor learning by a pursuit rotor test reduces functional outcomes during rehabilitation of poststroke ataxia," Neurorehabil. Neural Repair 26, 293–300 (2012).

    [45] M. Delorme, G. Vergotte, S. Perrey, J. Froger, I. La?ont, "Time course of sensorimotor cortex reorganization during upper extremity task accompanying motor recovery early after stroke: An fNIRS study," Restor. Neurol. Neurosci. 37, 207–218 (2019).

    [46] S. Kinoshita, H. Tamashiro, T. Okamoto, N. Urushidani, M. Abo, "Association between imbalance of cortical brain activity and successful motor recovery in sub-acute stroke patients with upper limb hemiparesis: A functional near-infrared spectroscopy study," NeuroReport 30, 822–827 (2019).

    [47] Z. Bai, K. N. K. Fong, ""Remind-to-Move" Treatment enhanced activation of the primary motor cortex in patients with stroke," Brain Topogr. 33, 275–283 (2020).

    [48] P. Y. Lin, J. J. Chen, S. I. Lin, "The cortical control of cycling exercise in stroke patients: an fNIRS study," Hum. Brain Mapp. 34, 2381–2390 (2013).

    [49] K. Miyara, K. Kawamura, S. Matsumoto, A. Ohwatashi, Y. Itashiki, T. Uema, T. Noma, K. Ikeda, M. Shimodozono, "Acute changes in cortical activation during active ankle movement after whole-body vibration for spasticity in hemiplegic legs of stroke patients: A functional near-infrared spectroscopy study," Top Stroke Rehabil. 27, 67–74 (2020).

    [50] E. Jigjid, N. Kawashima, H. Ogata, K. Nakazawa, M. Akai, F. Eto, N. Haga, "Effects of passive leg movement on the oxygenation level of lower limb muscle in chronic stroke patients," Neurorehabil. Neural Repair 22, 40–49 (2008).

    [51] I. Miyai, H. Yagura, M. Hatakenaka, I. Oda, I. Konishi, K. Kubota, "Longitudinal optical imaging study for locomotor recovery after stroke," Stroke 34, 2866–2870 (2003).

    [52] H. Fujimoto, M. Mihara, N. Hattori, M. Hatakenaka, T. Kawano, H. Yagura, I. Miyai, H. Mochizuki, "Cortical changes underlying balance recovery in patients with hemiplegic stroke," Neuroimage 85, 547–554 (2014).

    [53] C. Huo, G. Xu, Z. Li, Z. Lv, Q. Liu, W. Li, H. Ma, D. Wang, Y. Fan, "Limb linkage rehabilitation training-related changes in cortical activation and effective connectivity after stroke: A functional nearinfrared spectroscopy study," Sci. Rep. 9, 6226 (2019).

    [54] K. Lu, G. Xu, W. Li, C. Huo, Q. Liu, Z. Lv, Y. Wang, Z. Li, Y. Fan, "Frequency-specific functional connectivity related to the rehabilitation task of stroke patients," Med. Phys. 46, 1545–1560 (2019).

    [55] K. Saita, T. Morishita, H. Arima, K. Hyakutake, T. Ogata, K. Yagi, E. Shiota, T. Inoue, "Biofeedback effect of hybrid assistive limb in stroke rehabilitation: A proof of concept study using functional near infrared spectroscopy," PLoS One 13, e0191361 (2018).

    [56] G. Massimiliano, G. Paolo, V. Laura, L. Sara, V. Jorge, O. Claudio, N. Stefano, B. Luciano, "Hand passive mobilization performed with robotic assistance: Acute effects on upper limb perfusion and spasticity in stroke survivors," Biomed. Res. Int. 2017, 1–6 (2017).

    [57] S. J. Bae, S. H. Jang, J. P. Seo, P. H. Chang, "A pilot study on the optimal speeds for passive wrist movements by a rehabilitation robot of stroke patients: A functional NIRS study," IEEE Proc. Int. Conf. Rehabilitation and Robotics, Vol. 2017 (2017), pp. 7–12.

    [58] K. J. Song, H. C. Min, J. Lee, C. J. N. Lee, "The effect of robot-assisted gait training on cortical activation in stroke patients: A functional nearinfrared spectroscopy study," NeuroRehabilitation 49, 65–73 (2021).

    [59] I. Miyai, H. Yagura, I. Oda, I. Konishi, K. Kubota, "Premotor cortex is involved in restoration of gait in stroke," Ann. Neurol. 52, 188–194 (2002).

    [60] S.-H. Lee, H.-J. Lee, Y. Shim, W. H. Chang, B.-O. Choi, G.-H. Ryu, Y.-H. Kim, "Wearable hip-assist robot modulates cortical activation during gait in stroke patients: A functional near-infrared spectroscopy study," J. Neuroeng. Rehabil. 17, 145 (2020).

    [61] P. Caliandro, F. Molteni, C. Simbolotti, E. Guanziroli, C. Iacovelli, G. Reale, S. Giovannini, L. Padua, "Exoskeleton-assisted gait in chronic stroke: An EMG and functional near-infrared spectroscopy study of muscle activation patterns and prefrontal cortex activity," Clin. Neurophysiol. 131, 1775–1781 (2020).

    [62] Y. Hara, S. Obayashi, K. Tsujiuchi, Y. Muraoka, "The effects of electromyography-controlled functional electrical stimulation on upper extremity function and cortical perfusion in stroke patients," Clin. Neurophysiol. 124, 2008–2015 (2013).

    [63] S. Ferrante, D. Contini, L. Spinelli, A. Pedrocchi, A. Torricelli, F. Molteni, G. Ferrigno, R. Cubeddu, "Monitoring muscle metabolic indexes by time-domain near-infrared spectroscopy during knee flex-extension induced by functional electrical stimulation," J. Biomed. Opt. 14, 044011 (2009).

    [64] C. C. Lo, P. Y. Lin, Z. Y. Hoe, J. J. Chen, "Near infrared spectroscopy study of cortical excitability during electrical stimulation-assisted cycling for neurorehabilitation of stroke patients," IEEE Trans. Neural Syst. Rehabil. Eng. 26, 1292–1300 (2018).

    [65] M. Mihara, N. Hattori, M. Hatakenaka, H. Yagura, T. Kawano, T. Hino, I. Miyai, "Near-infrared spectroscopy-mediated neurofeedback enhances efficacy of motor imagery-based training in poststroke victims a pilot study," Stroke 44, 1091–1098 (2013).

    [66] M. Mihara, H. Fujimoto, N. Hattori, H. Otomune, Y. Kajiyama, K. Konaka, Y.Watanabe, Y. Hiramatsu, Y. Sunada, I. Miyai, H. Mochizuki, "Effect of neurofeedback facilitation on poststroke gait and balance recovery: a randomized controlled trial," Neurology 96, e2587-e2598 (2021).

    [67] M. Brunetti, N. Morkisch, C. Fritzsch, J. Mehnert, J. Steinbrink, M. Niedeggen, C. Dohle, "Potential determinants of efficacy of mirror therapy in stroke patients–A pilot study," Restor. Neurol. Neurosci. 33, 421–434 (2015).

    [68] M. Rea, M. Rana, N. Lugato, P. Terekhin, L. Gizzi, D. Brotz, A. Fallgatter, N. Birbaumer, R. Sitaram, A. Caria, "Lower limb movement preparation in chronic stroke: A pilot study toward an fNIRS-BCI for gait rehabilitation," Neurorehabil. Neural Repair 28, 564–575 (2014).

    [69] A. K. Matarasso, J. D. Rieke, K. White, M. M. Yusufali, J. J. Daly, "Combined real-time fMRI and real time fNIRS brain computer interface (BCI): Training of volitional wrist extension after stroke, a case series pilot study," PLoS One 16, e0250431 (2021).

    [70] C. Grefkes, G. R. Fink, "Noninvasive brain stimulation after stroke: It is time for large randomized controlled trials!," Curr. Opin. Neurol. 29, 714– 720 (2016).

    [71] G. Di Pino, G. Pellegrino, G. Assenza, F. Capone, F. Ferreri, D. Formica, F. Ranieri, M. Tombini, U. Ziemann, J. C. Rothwell, V. Di Lazzaro, "Modulation of brain plasticity in stroke: A novel model for neurorehabilitation," Nat. Rev. Neurol. 10, 597–608 (2014).

    [72] H. Tamashiro, S. Kinoshita, T. Okamoto, N. Urushidani, M. Abo, "Effect of baseline brain activity on response to low-frequency rTMS/ intensive occupational therapy in poststroke patients with upper limb hemiparesis: A near-infrared spectroscopy study," Int. J. Neurosci. 129, 337–343 (2019).

    [73] Z. Rezaee, S. Ranjan, D. Solanki, M. Bhattacharya, M. V. P. Srivastava, U. Lahiri, A. Dutta, "Feasibility of combining functional near-infrared spectroscopy with electroencephalography to identify chronic stroke responders to cerebellar transcranial direct current stimulation-a computational modeling and portable neuroimaging methodological study," Cerebellum (2021).

    [74] E. Al-Yahya, H. Johansen-Berg, U. Kischka, M. Zarei, J. Cockburn, H. Dawes, "Prefrontal cortex activation while walking under dual-task conditions in stroke: a multimodal imaging study," Neurorehabil. Neural Repair 30, 591–599 (2016).

    [75] T. Mori, N. Takeuchi, S. I. Izumi, "Prefrontal cortex activation during a dual task in patients with stroke," Gait Posture 59, 193–198 (2018).

    [76] K. A. Hawkins, E. J. Fox, J. J. Daly, D. K. Rose, E. A. Christou, T. E. McGuirk, D. M. Otzel, K. A. Butera, S. A. Chatterjee, D. J. Clark, "Prefrontal over-activation during walking in people with mobility deficits: Interpretation and functional implications," Hum. Mov. Sci. 59, 46–55 (2018).

    [77] E. Hermand, B. Tapie, O. Dupuy, S. Fraser, M. Compagnat, J. Y. Salle, J. C. Daviet, A. Perrochon, "Prefrontal cortex activation during dual task with increasing cognitive load in subacute stroke patients: A pilot study," Front. Aging Neurosci. 11, 160 (2019).

    [78] S. A. Chatterjee, E. J. Fox, J. J. Daly, D. K. Rose, S. S. Wu, E. A. Christou, K. A. Hawkins, D. M. Otzel, K. A. Butera, J. W. Skinner, D. J. Clark, "Interpreting prefrontal recruitment during walking after stroke: Influence of individual differences in mobility and cognitive function," Front. Hum. Neurosci. 13, 194 (2019).

    [79] Y. C. Liu, Y. R. Yang, Y. A. Tsai, R. Y. Wang, C. F. Lu, "Brain activation and gait alteration during cognitive and motor dual task walking in stroke-a functional near-infrared spectroscopy study," IEEE Trans. Neural Syst. Rehabil. Eng. 26, 2416–2423 (2018).

    [80] D. J. Clark, D. K. Rose, K. A. Butera, B. Hoisington, L. DeMark, S. A. Chatterjee, K. A. Hawkins, D. M. Otzel, J. W. Skinner, E. A. Christou, S. S. Wu, E. J. Fox, "Rehabilitation with accurate adaptability walking tasks or steady state walking: A randomized clinical trial in adults post-stroke," Clin. Rehabil. 35, 1196–1206 (2021).

    [81] F. A. Mansouri, K. Tanaka, M. J. Buckley, "Conflict-induced behavioural adjustment: A clue to the executive functions of the prefrontal cortex," Nat. Rev. Neurosci. 10, 141–152 (2009).

    [82] S. Obayashi, "Frontal dynamic activity as a predictor of cognitive dysfunction after pontine ischemia," NeuroRehabilitation 44, 251–261 (2019).

    [83] M. Moriya, C.Aoki, K. Sakatani, "Effects of physical exercise on working memory and prefrontal cortex function in post-stroke patients," Adv. Exp. Med. Biol. 923, 203–208 (2016).

    [84] J. Chen, H. Li, C. Zeng, J. Li, B. Zhao, "Evaluation of the recovery outcome of poststroke cognitive impairment after cluster needling of scalp acupuncture therapy based on functional near-infrared spectroscopy," Brain Behav. 10, e01731 (2020).

    [85] S. Obayashi, "The supplementary motor area responsible for word retrieval decline after acute thalamic stroke revealed by coupled SPECT and near-infrared spectroscopy," Brain Sci. 10, 247 (2020).

    [86] T. Hara, M. Abo, K. Kakita, Y. Mori, M. Yoshida, N. Sasaki, "The effect of selective transcranial magnetic stimulation with functional near-infrared spectrescopy and intensive speech therapy on individuals with post-stroke aphasia," Eur. Neurol. 77, 186–194 (2017).

    [87] G. C. Medeiros, D. Roy, N. Kontos, S. R. Beach, "Post-stroke depression: A 2020 updated review," Gen. Hosp. Psychiatry 66, 70–80 (2020).

    [88] M. Koyanagi,M. Yamada, T. Higashi,W.Mitsunaga, T. Moriuchi, M. Tsujihata, "The usefulness of functional near-infrared spectroscopy for the assessment of post-stroke depression," Front. Hum. Neurosci. 15, 680847 (2021).

    [89] H. Li, N. Zhu, E. A. Klomparens, S. Xu, M. Wang, Q. Wang, J. Wang, L. Song, "Application of functional near-infrared spectroscopy to explore the neural mechanism of transcranial direct current stimulation for post-stroke depression," Neurol. Res. 41, 714–721 (2019).

    [90] T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, J. A. Detre, "Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients," Opt. Express 17, 3884–3902 (2009).

    [91] P. Bonoczk, G. Panczel, Z. Nagy, "Vinpocetine increases cerebral blood flow and oxygenation in stroke patients: A near infrared spectroscopy and transcranial Doppler study," Eur. J. Ultrasound 15, 85–91 (2002).

    [92] F. Pizza, M. Biallas, U. Kallweit, M. Wolf, C. L. Bassetti, "Cerebral hemodynamic changes in stroke during sleep-disordered breathing," Stroke 43, 1951–1953 (2012).

    [93] M. Moriya, K. Sakatani, "Relation between asymmetry of prefrontal activity and autonomic nervous system in post-stroke patients with a disorder of consciousness," Adv. Exp. Med. Biol. 1072, 53–58 (2018).

    [94] M. Moriya, K. Sakatani, "Changes in prefrontal cortex asymmetry due to standing load in stroke patients measured by NIRS," Adv. Exp. Med. Biol. 1269, 223–227 (2021).

    [95] J. Selb, M. A. Yücel, D. Phillip, H. W. Schytz, H. K. Iversen, M. Vangel, M. Ashina, D. A. Boas, "Effect of motion artifacts and their correction on near-infrared spectroscopy oscillation data: A study in healthy subjects and stroke patients," J. Biomed. Opt. 20, 56011 (2015).

    [96] S. Leistner, T. Sander-Thoemmes, H. Wabnitz, M. Moeller, M. Wachs, G. Curio, R. Macdonald, L. Trahms, B.-M. Mackert, "Non-invasive simultaneous recording of neuronal and vascular signals in subacute ischemic stroke," Biomed. Tech. 56, 85–90 (2011).

    [97] A. Dutta, A. Jacob, S. R. Chowdhury, A. Das, M. A. Nitsche, "EEG-NIRS based assessment of neurovascular coupling during anodal transcranial direct current stimulation — a stroke case series," J. Med. Syst. 39, 205 (2015).

    [98] Y. Sato, Y. Komuro, L. Lin, Z. Tang, L. Hu, S. Kadowaki, Y. Ugawa, Y. Yamada, K. Sakatani, "Differences in tissue oxygenation, perfusion and optical properties in brain areas affected by stroke: A time-resolved NIRS study," Adv. Exp. Med. Biol. 1072, 63–67 (2018).

    [99] M. D. Fox, M. E. Raichle, "Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging," Nat. Rev. Neurosci. 8, 700–711 (2007).

    [100] L. A. Boyd, K. S. Hayward, N. S. Ward, C. M. Stinear, C. Rosso, R. J. Fisher, A. R. Carter, A. P. Le?, D. A. Copland, L. M. Carey, L. G. Cohen, D. M. Basso, J. M. Maguire, S. C. Cramer, "Biomarkers of stroke recovery: Consensus-based core recommendations from the stroke recovery and rehabilitation roundtable," Int. J. Stroke 12, 480–493 (2017).

    [101] S. H. Kohl, D. M. A. Mehler, M. Lührs, R. T. Thibault, K. Konrad, B. Sorger, "The potential of functional near-infrared spectroscopy-based neurofeedback-a systematic review and recommendations for best practice," Front. Neurosci. 14, 594 (2020).

    [102] K. S. Button, J. P. Ioannidis, C. Mokrysz, B. A. Nosek, J. Flint, E. S. Robinson, M. R. Munafò, "Power failure: Why small sample size undermines the reliability of neuroscience," Nat. Rev. Neurosci. 14, 365–376 (2013).

    [103] M. Susanne, E. Edgar, B. Axel, F. Franz, "A short tutorial of GPower," Tutor Quant. Methods Psychol. 3, 51–59 (2007).

    [104] V. Toronov, A. Webb, J. H. Choi, M. Wolf, A. Michalos, E. Gratton, D. Hueber, "Investigation of human brain hemodynamics by simultaneous near-infrared spectroscopy and functional magnetic resonance imaging," Med. Phys. 28, 521–527 (2001).

    [105] G. Strangman, J. P. Culver, J. H. Thompson, D. A. Boas, "A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation," Neuroimage 17, 719–731 (2002).

    [106] I. Tachtsidis, F. Scholkmann, "False positives and false negatives in functional near-infrared spectroscopy: Issues, challenges, and the way forward," Neurophotonics 3, 031405 (2016).

    [107] H. Santosa, X. Zhai, F. Fishburn, P. J. Sparto, T. J. Huppert, "Quantitative comparison of correction techniques for removing systemic physiological signal in functional near-infrared spectroscopy studies," Neurophotonics 7, 035009 (2020).

    [108] A. von Lühmann, X. Li, K. R. Müller, D. A. Boas, M. A. Yücel, "Improved physiological noise regression in fNIRS: A multimodal extension of the general linear model using temporally embedded canonical correlation analysis," Neuroimage 208, 116472 (2020).

    [109] M. A. Yücel, A. V. Lühmann, F. Scholkmann, J. Gervain, I. Dan, H. Ayaz, D. Boas, R. J. Cooper, J. Culver, C. E. Elwell, A. Eggebrecht, M. A. Franceschini, C. Grova, F. Homae, F. Lesage, H. Obrig, I. Tachtsidis, S. Tak, Y. Tong, A. Torricelli, H. Wabnitz, M. Wolf, "Best practices for fNIRS publications," Neurophotonics 8, 012101 (2021).

    [110] R. Lindquist, J. F. Wyman, K. M. Talley, M. J. Findor?, C. R. Gross, "Design of control-group conditions in clinical trials of behavioral interventions," J. Nurs. Scholarsh. 39, 214–221 (2007).

    [111] V. S. Conn, T. C. Sells, "Compared to What?," West J. Nurs. Res. 42, 772–773 (2020).

    [112] J. Lee, A. Lee, H. Kim, M. Shin, S. M. Yun, Y. Jung, W. H. Chang, Y. H. Kim, "Different brain connectivity between responders and nonresponders to dual-mode noninvasive brain stimulation over bilateral primary motor cortices in stroke patients," Neural Plast. 2019, 3826495 (2019).

    [113] H. L. Filmer, J. B. Mattingley, P. E. Dux, "Modulating brain activity and behaviour with tDCS: Rumours of its death have been greatly exaggerated," Cortex 123, 141–151 (2020).

    [114] X. Chen, P. Xie, Y. Zhang, Y. Chen, S. Cheng, L. Zhang, "Abnormal functional corticomuscular coupling after stroke," Neuroimage Clin. 19, 147–159 (2018).

    [115] P. Pinti, C. Aichelburg, S. Gilbert, A. Hamilton, J. Hirsch, P. Burgess, I. Tachtsidis, "A review on the use of wearable functional near-infrared spectroscopy in naturalistic environments," Jpn. Psychol. Res. 60, 347–373 (2018).

    [116] A. von Lühmann, B. B. Zimmermann, A. Ortega- Martinez, N. Perkins, M. A. Yücel, D. A. Boas, Towards neuroscience in the everyday world: Progress in wearable fNIRS instrumentation and applications, in OSA Biophotonics Congress: Optics in Life Sciences 2020, Florida (2020).

    [117] H. Ban, G. Barrett, A. Borisevich, A. Chaturvedi, J. Dahle, H. Dehghani, B. DoValle, J. Dubois, R. Field, V. Gopalakrishnan, A. Gundran, M. Henninger, W. Ho, H. Hughes, R. Jin, J. Kates- Harbeck, T. Landy, A. Lara, M. Leggiero, G. Lerner, Z. Aghajan, M. Moon, A. Ojeda, I. Olvera, M. Ozturk, S. Park, M. Patel, K. Perdue, W. Poon, Z. Sheldon, B. Siepser, S. Sorgenfrei, N. Sun, V. Szczepanski, M. Zhang, Z. Zhu, Kernel flow: A high channel count scalable TD-fNIRS system, in SPIE BiOS, SPIE (2021).

    [118] F. Lange, I. Tachtsidis, "Clinical brain monitoring with time domain NIRS: A review and future perspectives," Appl. Sci. (Basel) 9, 1612 (2019).

    [119] S. R. Soekadar, S. H. Kohl, M. Mihara, A. von Lühmann, "Optical brain imaging and its application to neurofeedback," NeuroImage Clin. 30, 102577 (2021).

    [120] K. S. Hong, M. J. Khan, M. J. Hong, "Feature extraction and classification methods for hybrid fNIRS-EEG brain–computer interfaces," Front. Hum. Neurosci. 12, 246 (2018).

    [121] S. Finger, P. J. Koehler, C. Jagella, "The Monakow concept of diaschisis: Origins and perspectives," Arch. Neurol. 61, 283–288 (2004).

    [122] Q. Zhang, E. N. Brown, G. E. Strangman, "Adaptive filtering to reduce global interference in evoked brain activity detection: A human subject case study," J. Biomed. Opt. 12, 064009 (2007).

    [123] L. Duan, Z. Zhao, Y. Lin, X. Wu, Y. Luo, P. Xu, "Wavelet-based method for removing global physiological noise in functional near-infrared spectroscopy," Biomed. Opt Express 9, 3805–3820 (2018).

    [124] G. Bauernfeind, S. C. Wriessnegger, I. Daly, G. R. Mueller-Putz, "Separating heart and brain: On the reduction of physiological noise from multichannel functional near-infrared spectroscopy (fNIRS) signals," J. Neural Eng. 11, 056010 (2014).

    [125] J. Sun, L. Rao, C. Gao, "Extracting heartrate from optical signal of functional near-infrared spectroscopy based on mathematical morphology," J. Innov. Opt. Health Sci. 11, 1850010 (2018).

    [126] T. Li, C. Xue, P. B. Wang, Y. Li, L. H. Wu, "Photon penetration depth in human brain for light stimulation and treatment: A realistic Monte Carlo simulation study," J. Innov. Opt. Health Sci. 10, 10 (2017).

    [127] A. Wong, L. Robinson, S. Soroush, A. Suresh, K. P. J. J. O. I. O. H. Sciences, "Assessment of cerebral oxygenation response to hemodialysis using near-infrared spectroscopy (NIRS): Challenges and solutions," J. Innov. Opt Health Sci. (2021).

    [128] L. Li, X. Pan, W. Chen, M. Wei, H. Yang, "Multimanufacturer drug identification based on near infrared spectroscopy and deep transfer learning," J. Innov. Opt. Health Sci. 13, 2150016 (2020).

    [129] Z. H. Barnea, D. Abookasis, "Determination of creatinine level in patient blood samples by Fourier NIR spectroscopy and multivariate analysis in comparison with biochemical assay," J. Innov. Opt. Health Sci. 12, 1950015 (2019).

    [130] J. Sun, B. Sun, L. Zhang, Q. Luo, H. Gong, "Correlation between hemodynamic and electrophysiological signals dissociates neural correlates of conflict detection and resolution in a Stroop task: A simultaneous near-infrared spectroscopy and event-related potential study," J. Biomed. Opt. 18, 096014 (2013).

    [131] C. Gao, J. Sun, X. Yang, H. Gong, "Gender differences in brain networks during verbal Sternberg tasks: A simultaneous near-infrared spectroscopy and electro-encephalography study," J. Biophoton. 11, e201700120 (2018).

    Jinyan Sun, Richong Pang, Sisi Chen, Hucheng Chen, Yuanrong Xie, Dandan Chen, Kai Wu, Jianbin Liang, Kecheng Yan, Zhifeng Hao. Near-infrared spectroscopy as a promising tool in stroke: Current applications and future perspectives[J]. Journal of Innovative Optical Health Sciences, 2021, 14(6): 2130006
    Download Citation