• Laser & Optoelectronics Progress
  • Vol. 50, Issue 8, 80015 (2013)
Xia Kegui* and Li Jianlang
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop50.080015 Cite this Article Set citation alerts
    Xia Kegui, Li Jianlang. Recent Development in Radially Polarized Solid-State Laser with Composite Laser Crystal[J]. Laser & Optoelectronics Progress, 2013, 50(8): 80015 Copy Citation Text show less
    References

    [1] M Lieb, Alfred Meixner. A high numerical aperture parabolic mirror as imaging device for confocal microscopy [J]. Opt Express, 2001, 8(7): 458-474.

    [2] W D Kimura, G H Kim, R D Romea, et al.. Laser acceleration of relativistic electrons using the inverse Cherenkov effect [J]. Phys Rev Lett, 1995, 74(4): 546-549.

    [3] Q Zhan. Trapping metallic Rayleigh particles with radial polarization [J]. Opt Express, 2004, 12(15): 3377-3382.

    [4] M von Bostel. Wavelength specific advantages of CO2 laser [C]. Stuttgart Laser Technology Forum (SLT′10), 2010.

    [5] M Martin Kraus, Abdou Ahmed, Andreas Michalowski, et al.. Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization [J]. Opt Express, 2010, 18(21): 22305-22313.

    [6] V G Niziev, A V Nesterov. Influence of beam polarization on laser cutting efficiency [J]. J Phys D, 1999, 32(13): 1455-1461.

    [7] M Meier, V Romano, T Feurer. Material processing with pulsed radially and azimuthally polarized laser radiation [J]. Appl Phys A, 2007, 86(3): 329-334.

    [8] K Youngworth, T Brown. Focusing of high numerical aperture cylindrical-vector beams [J]. Opt Express, 2000, 7(2): 77-87.

    [9] S Tidwell, D Ford, W Kimura. Generating radially polarized beams interferometrically [J]. Appl Opt, 1990, 29(15): 2234-2240.

    [10] S Quabis, R Dorn, G Leuchs. Generation of a radially polarized doughnut mode of high quality [J]. Appl Phys B, 2005, 81(5): 597-600.

    [11] P B Phua, W J Lai, Yuan Liang Lim, et al.. Mimicking optical activity for generating radially polarized light [J]. Opt Lett, 2007, 32(4): 376-378.

    [12] M Stalder, M Schadt. Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters [J]. Opt Lett, 1996, 21(23): 1948-1950.

    [13] H Ren, Y H Lin, S T Wu. Linear to axial or radial polarization conversion using a liquid crystal gel [J]. Appl Phys Lett, 2006, 89(5): 051114.

    [14] Y Kozawa, S Sato. Generation of a radially polarized laser beam by use of a conical Brewster prism [J]. Opt Lett, 2005, 30(23): 3063-3065.

    [15] J F Bisson, J Li, K Ueda, et al.. Radially polarized ring and arc beams of a neodymium laser with an intra-cavity axicon [J]. Opt Express, 2006, 14(8): 3304-3311.

    [16] K Yonezawa, Y Kozawa, S Sato. Generation of a radially polarized laser beam by use of the birefringence of a c-cut NdYVO4 crystal [J]. Opt Lett, 2006, 31(14): 2151-2153.

    [17] M P Thirugnanasambandam, Y Senatsky, K Ueda. Generation of radially and azimuthally polarized beams in YbYAG laser with intra-cavity lens and birefringent crystal [J]. Opt Express, 2011, 19(3): 1905-1914.

    [18] Y Kozawa, K Yonezawa, S Sato. Radially polarized laser beam from a NdYAG laser cavity with a c-cut YVO4 crystal [J]. Appl Phys B, 2007, 88(1): 43-46.

    [19] I Moshe, S Jackel, A Meir. Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects [J]. Opt Lett, 2003, 28(10): 807-809.

    [20] I Moshe, S Jackel, A Meir, et al.. 2 kW, M2<10 radially polarized beams from aberration-compensated rod-based NdYAG lasers [J]. Opt Lett, 2007, 32(1): 47-49.

    [21] T Moser, M A Ahmed, F Pigeon, et al.. Generation of radially polarized beams in NdYAG lasers with polarization selective mirrors [J]. Laser Phys Lett, 2004, 1(5): 234-236.

    [22] D Lin, K Xia, R Li, et al.. Radially polarized and passively Q-switched fiber laser [J]. Opt Lett, 2010, 35(21): 3574-3576.

    [23] R Tyan, A A Salvekar, H Chou, et al.. Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter [J]. J Opt Soc Am A, 1997, 14(7): 1627-1636.

    [24] J Li, K Ueda, L Zhong, et al.. Efficient excitations of radially and azimuthally polarized Nd3+YAG ceramic microchip laser by use of subwavelength multilayer concentric gratings composed of Nb2O5/SiO2 [J]. Opt Express, 2008, 16(14): 10841-10848.

    [25] Jianlang Li, Kenichi Ueda, Mitsuru Musha, et al.. Radially polarized and pulsed output from passively Q-switched NdYAG ceramic microchip laser [J]. Opt Lett, 2008, 33(22): 2686-2688.

    [26] Kegui Xia, Kenichi Ueda, Jianlang Li. 1.29-W radially polarized and bonded NdYAG crystal laser [J]. Laser Phys Lett, 2011, 8(5): 354-357.

    [27] Kegui Xia, Jianlang Li. Radially polarized and passively Q-switched NdYAG laser with composite structure of gain medium [J]. Chin Opt Lett, 2011, 9(10): 101402.

    [28] Kegui Xia, Kenichi Ueda, Jianlang Li. Radially polarized, actively Q-switched, and end-pumped NdYAG laser [J]. Appl Phys B, 2012, 107(1): 47-51.

    CLP Journals

    [1] Li Long, Pan Xiaorui, Geng Yingge. Temperature Field of Nd∶YAG Microchip Heat Capacity Laser End-Pumped by LD[J]. Laser & Optoelectronics Progress, 2017, 54(12): 121404

    [2] Lin Huichuan, Pu Jixiong. Influence of Astigmatism on the Generation of Radial Polarized Non-Diffracting Beams[J]. Laser & Optoelectronics Progress, 2015, 52(1): 12602

    [3] Han Xiahui, Xia Kegui, Li Guiyun, Li Jianlang. 3.2 ns High Peak Power Radially Polarized Pulsed Output from Passively Q-Switched Microchip Laser with Composite Structure of YAG/Nd∶YAG/Cr4+∶YAG Crystal[J]. Chinese Journal of Lasers, 2015, 42(7): 702010

    [4] Ren Junjie, Gao Xiaoqiang, Chen Meng. Kilohertz Sub-Nanosecond Radially Polarized Light[J]. Laser & Optoelectronics Progress, 2017, 54(11): 111403

    Xia Kegui, Li Jianlang. Recent Development in Radially Polarized Solid-State Laser with Composite Laser Crystal[J]. Laser & Optoelectronics Progress, 2013, 50(8): 80015
    Download Citation