• Photonics Research
  • Vol. 9, Issue 7, 1416 (2021)
Meicheng Fu1、2, Yi Zheng2, Gaoyuan Li2, Wenjun Yi1, Junli Qi1, Shaojie Yin3, Xiujian Li1、4、*, and Xiaowei Guan2、5、*
Author Affiliations
  • 1Department of Physics, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China
  • 2DTU Fotonik, Technical University of Denmark, Lyngby DK-2800, Denmark
  • 3School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
  • 4e-mail: xjli@nudt.edu.cn
  • 5e-mail: xgua@fotonik.dtu.dk
  • show less
    DOI: 10.1364/PRJ.422235 Cite this Article Set citation alerts
    Meicheng Fu, Yi Zheng, Gaoyuan Li, Wenjun Yi, Junli Qi, Shaojie Yin, Xiujian Li, Xiaowei Guan. Ultra-compact titanium dioxide micro-ring resonators with sub-10-μm radius for on-chip photonics[J]. Photonics Research, 2021, 9(7): 1416 Copy Citation Text show less
    References

    [1] V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson. All-optical control of light on a silicon chip. Nature, 431, 1081-1084(2004).

    [2] J. Juan-Colás, A. Parkin, K. E. Dunn, M. G. Scullion, T. F. Krauss, S. D. Johnson. The electrophotonic silicon biosensor. Nat. Commun., 7, 12769(2016).

    [3] M. Kues, C. Reimer, J. M. Lukens, W. J. Munro, A. M. Weiner, D. J. Moss, R. Morandotti. Quantum optical microcombs. Nat. Photonics, 13, 170-179(2019).

    [4] X. Xu, M. Tan, B. Corcoran, J. Wu, A. Boes, T. G. Nguyen, S. T. Chu, B. E. Little, D. G. Hicks, R. Morandotti, A. Mitchell, D. J. Moss. 11 tops photonic convolutional accelerator for optical neural networks. Nature, 589, 44-51(2021).

    [5] P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, P. T. Ho. Wavelength conversion in GaAs micro-ring resonators. Opt. Lett., 25, 554-556(2000).

    [6] Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. Vučković, L. D. Negro. Linewidth narrowing and purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform. Opt. Express, 18, 2601-2612(2010).

    [7] M. Pu, L. Ottaviano, E. Semenova, K. Yvind. Efficient frequency comb generation in AlGaAs-on-insulator. Optica, 3, 823-826(2016).

    [8] L. Chang, W. Xie, H. Shu, Q.-F. Yang, B. Shen, A. Boes, J. D. Peters, W. Jin, C. Xiang, S. Liu, G. Moille, S.-P. Yu, X. Wang, K. Srinivasan, S. B. Papp, K. Vahala, J. E. Bowers. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nat. Commun., 11, 1331(2020).

    [9] A. D. Bristow, N. Rotenberg, H. M. van Driel. Two-photon absorption and Kerr coefficients of silicon for 850–2200  nm. Appl. Phys. Lett., 90, 191104(2007).

    [10] R. A. Soref, S. J. Emelett, W. R. Buchwald. Silicon waveguided components for the long-wave infrared region. J. Opt. A, 8, 840-848(2006).

    [11] K. Ikeda, R. E. Saperstein, N. Alic, Y. Fainman. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides. Opt. Express, 16, 12987-12994(2008).

    [12] J. D. B. Bradley, E. S. Hosseini. Monolithic erbium- and ytterbium-doped microring lasers on silicon chips. Opt. Express, 22, 12226-12237(2014).

    [13] S. A. Miller, M. Yu, X. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, M. Lipson. Low-loss silicon platform for broadband mid-infrared photonics. Optica, 4, 707-712(2017).

    [14] M. Belt, M. L. Davenport, J. E. Bowers, D. J. Blumenthal. Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates. Optica, 4, 532-536(2017).

    [15] X. Guan, H. Hu, L. K. Oxenløwe, L. H. Frandsen. Compact titanium dioxide waveguides with high nonlinearity at telecommunication wavelengths. Opt. Express, 26, 1055-1063(2018).

    [16] E. D. Palik. Handbook of Optical Constants of Solids(1985).

    [17] S. Zhu, G. Q. Lo, D. L. Kwong. Performance of ultracompact copper-capped silicon hybrid plasmonic waveguide-ring resonators at telecom wavelengths. Opt. Express, 20, 15232-15246(2012).

    [18] F. Lou, L. Thylen, L. Wosinski. Experimental demonstration of silicon-based metallic whispering gallery mode disk resonators and their thermo-tuning. Optical Fiber Communications Conference, Tu2E.1(2014).

    [19] Q. Xu, D. Fattal, R. G. Beausoleil. Silicon microring resonators with 1.5-μm radius. Opt. Express, 16, 4309-4315(2008).

    [20] J. R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I.-W. Hsieh, E. Dulkeith, W. M. Green, Y. A. Vlasov. Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires. Adv. Opt. Photon., 1, 162-235(2009).

    [21] D. J. Moss, R. Morandotti, A. L. Gaeta, M. Lipson. New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics. Nat. Photonics, 7, 597-607(2013).

    [22] H. Jung, S.-P. Yu, D. R. Carlson, T. E. Drake, T. C. Briles, S. B. Papp. Kerr solitons with tantala ring resonators. Nonlinear Optics, NW2A.3(2019).

    [23] J. Liu, E. Lucas, A. S. Raja, J. He, J. Riemensberger, R. N. Wang, M. Karpov, H. Guo, R. Bouchand, T. J. Kippenberg. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photonics, 14, 486-491(2020).

    [24] A. L. Gaeta, M. Lipson, T. J. Kippenberg. Photonic-chip-based frequency combs. Nat. Photonics, 13, 158-169(2019).

    [25] L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, M. Pollnau. Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides. Opt. Express, 18, 27703-27711(2010).

    [26] J. Bradley, M. Pollnau. Erbium-doped integrated waveguide amplifiers and lasers. Laser Photon. Rev., 5, 368-403(2011).

    [27] G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, J. Bowers. III-V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photon. Rev., 4, 751-779(2010).

    [28] D. Ding, L. M. C. Pereira, J. F. Bauters, M. J. R. Heck, G. Welker, A. Vantomme, J. E. Bowers, M. J. A. de Dood, D. Bouwmeester. Multidimensional Purcell effect in an ytterbium-doped ring resonator. Nat. Photonics, 10, 385-388(2016).

    [29] M. Fu, Y. Zheng, G. Li, H. Hu, M. Pu, L. K. Oxenløwe, L. H. Frandsen, X. Li, X. Guan. High-Q titanium dioxide micro-ring resonators for integrated nonlinear photonics. Opt. Express, 28, 39084-39092(2020).

    [30] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets. Silicon microring resonators. Laser Photon. Rev., 6, 47-73(2012).

    [31] E. M. Purcell. Spontaneous emission probabilities at radio frequencies. Phys. Rev., 69, 37-38(1946).

    [32] M. Bahadori, M. Nikdast, S. Rumley, L. Y. Dai, N. Janosik, T. Van Vaerenbergh, A. Gazman, Q. Cheng, R. Polster, K. Bergman. Design space exploration of microring resonators in silicon photonic interconnects: impact of the ring curvature. J. Lightwave Technol., 36, 2767-2782(2018).

    [33] K. Luke, A. Dutt, C. B. Poitras, M. Lipson. Overcoming Si3N4 film stress limitations for high quality factor ring resonators. Opt. Express, 21, 22829-22833(2013).

    [34] M. Soltani. Novel integrated silicon nanophotonic structures using ultra-high Q resonators(2009).

    [35] Y. Song, J. Wang, M. Yan, M. Qiu. Subwavelength hybrid plasmonic nanodisk with high Q factor and Purcell factor. J. Opt., 13, 075001(2011).

    [36] Y. Su, P. Chang, C. Lin, A. S. Helmy. Record Purcell factors in ultracompact hybrid plasmonic ring resonators. Sci. Adv., 5, eaav1790(2019).

    [37] S. Signorini, M. Mancinelli, M. Borghi, M. Bernard, M. Ghulinyan, G. Pucker, L. Pavesi. Intermodal four-wave mixing in silicon waveguides. Photon. Res., 6, 805-814(2018).

    [38] C. Lacava, T. Dominguez Bucio, A. Z. Khokhar, P. Horak, Y. Jung, F. Y. Gardes, D. J. Richardson, P. Petropoulos, F. Parmigiani. Intermodal frequency generation in silicon-rich silicon nitride waveguides. Photon. Res., 7, 615-621(2019).

    [39] M. Pu, H. Hu, L. Ottaviano, E. Semenova, D. Vukovic, L. K. Oxenløwe, K. Yvind. Ultra-efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical signal processing. Laser Photon. Rev., 12, 1800111(2018).

    [40] X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, M. Lipson. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica, 4, 619-624(2017).

    [41] P. Xing, G. F. R. Chen, X. Zhao, D. K. T. Ng, M. C. Tan, D. T. H. Tan. Silicon rich nitride ring resonators for rare-earth doped telecommunications-band amplifiers pumped at the O-band. Sci. Rep., 7, 9101(2017).

    [42] C. C. Evans, C. Liu, J. Suntivich. Low-loss titanium dioxide waveguides and resonators using a dielectric lift-off fabrication process. Opt. Express, 23, 11160-11169(2015).

    [43] G. Li, M. Fu, Y. Zheng, X. Guan. TiO2 microring resonators with high Q and compact footprint fabricated by a bottom-up method. Opt. Lett., 45, 5012-5015(2020).

    [44] D. T. H. Tan, K. J. A. Ooi, D. K. T. Ng. Nonlinear optics on silicon-rich nitride—a high nonlinear figure of merit CMOS platform. Photon. Res., 6, B50-B66(2018).

    [45] K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, D. T. H. Tan. Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge. Nat. Commun., 8, 13878(2017).

    [46] P. Jenouvrier, G. Boccardi, J. Fick, A. M. Jurdyc, M. Langlet. Up-conversion emission in rare earth-doped Y2Ti2O7 sol-gel thin films. J. Lumin., 113, 291-300(2005).

    [47] P. Jenouvrier, M. Langlet, R. Rimet, J. Fick. Influence of crystallisation on the photoluminescence properties of Y2-xErxTi2O7 sol-gel thin films. Appl. Phys. A, 77, 687-692(2003).

    Meicheng Fu, Yi Zheng, Gaoyuan Li, Wenjun Yi, Junli Qi, Shaojie Yin, Xiujian Li, Xiaowei Guan. Ultra-compact titanium dioxide micro-ring resonators with sub-10-μm radius for on-chip photonics[J]. Photonics Research, 2021, 9(7): 1416
    Download Citation