• Photonics Research
  • Vol. 1, Issue 4, 171 (2013)
X. P. Hu, P. Xu, and S. N. Zhu*
Author Affiliations
  • National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
  • show less
    DOI: 10.1364/PRJ.1.000171 Cite this Article Set citation alerts
    X. P. Hu, P. Xu, S. N. Zhu. Engineered quasi-phase-matching for laser techniques [Invited][J]. Photonics Research, 2013, 1(4): 171 Copy Citation Text show less
    References

    [1] T. H. Maiman. Stimulated optical radiation in ruby. Nature, 187, 493-494(1960).

    [2] P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich. Generation of optical harmonics. Phys. Rev. Lett., 7, 118-119(1961).

    [3] D. A. Kleinman. Theory of second harmonic generation of light. Phys. Rev., 128, 1761-1775(1962).

    [4] J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan. Interactions between light waves in dielectric. Phys. Rev., 127, 1918-1939(1962).

    [5] M. S. Piltch, C. D. Cantrell, R. C. Sze. Infrared second-harmonic generation in nonbirefringent cadmium telluride. J. Appl. Phys., 47, 3514-3517(1976).

    [6] A. Szilagyi, A. Hordvik, H. Schlossberg. A quasi-phase-matching technique for efficient optical mixing and frequency doubling. J. Appl. Phys., 47, 2025-2032(1976).

    [7] D. E. Thompson, J. D. McMullen, D. B. Anderson. Second-harmonic generation in GaAs ‘‘stack of plates’’ using high-power CO2 laser radiation. Appl. Phys. Lett., 29, 113-115(1976).

    [8] M. Okada, K. Takizawa, S. Ieiri. Second harmonic generation by periodic laminar structure of nonlinear optical crystal. Opt. Commun., 18, 331-334(1976).

    [9] N. B. Ming, J. F. Hong, D. Feng. The growth striations and ferroelectric domain structures in Czochralski-grown LiNbO3 single crystals. J. Mater. Sci., 17, 1663-1670(1982).

    [10] Y. L. Lu, Y. Q. Lu, X. F. Chen, G. P. Luo, C. C. Xue, N. B. Ming. Formation mechanism for ferroelectric domain structures in a LiNbO3 optical superlattice. Appl. Phys. Lett., 68, 2642-2644(1996).

    [11] D. Feng, N. B. Ming, J. F. Hong, Y. S. Yang, J. S. Zhu, Z. Yang, Y. N. Wang. Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains. Appl. Phys. Lett., 37, 607-609(1980).

    [12] W. S. Wang, Q. Zou, Z. H. Geng, D. Feng. Study of LiTaO3 crystals grown with a modulated structure I. Second harmonic generation in LiTaO3 crystals with periodic laminar ferroelectric domains. J. Cryst. Growth, 79, 706-709(1986).

    [13] M. M. Fejer, J. L. Nightingale, G. A. Magel, R. L. Byer. Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers. Rev. Sci. Instrum., 55, 1791-1796(1984).

    [14] Y. S. Luh, R. S. Feigelson, M. M. Fejer, R. Byer. Ferroelectric domain structures in LiNbO3 single-crystal fibers. J. Cryst. Growth, 78, 135-143(1986).

    [15] G. A. Magel, M. M. Fejer, R. L. Byer. Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3. Appl. Phys. Lett., 56, 108-110(1990).

    [16] D. H. Jundt, G. A. Magel, M. M. Fejer, R. L. Byer. Periodically poled LiNbO3 for high-efficiency second-harmonic generation. Appl. Phys. Lett., 59, 2657-2659(1991).

    [17] E. J. Lim, M. M. Fejer, R. L. Byer. Second-harmonic generation of green light in periodically-poled planar lithium niobate waveguide. Electron. Lett., 25, 174-175(1989).

    [18] E. J. Lim, M. M. Fejer, R. L. Byer, W. J. Kozlovsky. Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide. Electron. Lett., 25, 731-732(1989).

    [19] J. Webjörn, F. Laurell, G. Arvidsson. Blue light generated by frequency doubling of laser diode light in a lithium niobate channel waveguide. IEEE Photon. Technol. Lett., 1, 316-318(1989).

    [20] S. Miyazawa. Ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide. J. Appl. Phys., 50, 4599-4603(1979).

    [21] J. D. Bierlein, D. B. Laubacher, J. B. Brown, C. J. van der Poel. Balanced phase matching in segmented KTiOPO4 waveguides. Appl. Phys. Lett., 56, 1725-1727(1990).

    [22] C. J. van der Poel, J. D. Bierlein, J. B. Brown Co., S. Colak. Efficient type I blue second-harmonic generation in periodically segmented KTiOPO4 waveguides. Appl. Phys. Lett., 57, 2074-2076(1990).

    [23] M. Yamada, N. Nada, M. Saitoh, K. Watanabe. First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation. Appl. Phys. Lett., 62, 435-436(1993).

    [24] H. Ito, C. Takyu, H. Inaba. Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes. Electron. Lett., 27, 1221-1222(1991).

    [25] G. D. Miller. Periodically poled lithium niobate: modeling, fabrication, and nonlinear-optical performance(1998).

    [26] S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, N. B. Ming. LiTaO3 crystal periodically poled by applying an external pulsed field. J. Appl. Phys., 77, 5481-5483(1995).

    [27] W. P. Risk, S. D. Lau. Periodic electric field poling of KTiOPO4 using chemical patterning. Appl. Phys. Lett., 69, 3999-4001(1996).

    [28] Y. Y. Zhu, J. S. Fu, R. F. Xiao, G. K. L. Wong. Second harmonic generation in periodically domain-inverted Sr0.6Ba0.4Nb2O6 crystal plate. Appl. Phys. Lett., 70, 1793-1795(1997).

    [29] L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, J. W. Pierce. Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3. J. Opt. Soc. Am. B, 12, 2102-2116(1995).

    [30] L. E. Myers. Quasi-phase-matched optical parametric oscillators in bulk periodically poled lithium niobate(1995).

    [31] G. D. Miller, R. G. Batchko, M. M. Fejer, R. L. Byer. Visible quasi-phase-matched harmonic generation by electric-field-poled lithium niobate. Proc. SPIE, 2700, 34-35(1996).

    [32] R. G. Batchko, V. Y. Shur, M. M. Fejer, R. L. Boyd. Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation. Appl. Phys. Lett., 75, 1673-1675(1999).

    [33] A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, S. Mailis. Surface domain engineering in congruent lithium niobate single crystals: a route to submicron periodic poling. Appl. Phys. Lett., 81, 4946-4948(2002).

    [34] A. C. Busacca, C. L. Sones, R. W. Eason, S. Mailis. First-order quasi-phase-matched blue light generation in surface-poled Ti:indiffused lithium niobate waveguides. Appl. Phys. Lett., 84, 4430-4432(2004).

    [35] G. Zhong, J. Jian, Z. Wu. Measurement of optically induced refractive-index change of lithium niobate doped with different concentration of MgO. Proceedings of the 11th International Quantum Electronics Conference, 631-635(1980).

    [36] A. Kuroda, S. Kurimura, Y. Uesu. Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields. Appl. Phys. Lett., 69, 1565-1567(1996).

    [37] S. Sonoda, I. Tsuruma, M. Hatori. Second harmonic generation in electric poled X-cut MgO-doped LiNbO3 waveguides. Appl. Phys. Lett., 70, 3078-3080(1997).

    [38] T. Sugita, K. Mizuuchi, Y. Kitaoka, K. Yamamoto. Ultraviolet light generation in a periodically poled MgO:LiNbO3 waveguide. Jpn. J. Appl. Phys., 40, 1751-1753(2001).

    [39] H. Ishizuki, I. Shoji, T. Taira. Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature. Appl. Phys. Lett., 82, 4062-4064(2003).

    [40] H. Ishizuki, T. Taira, S. Kurimura, J. H. Ro, M. Cha. Periodic poling in 3-mm-thick MgO:LiNbO3 crystals. Jpn. J. Appl. Phys., 42, L108-L110(2003).

    [41] H. Ishizuki, T. Taira. High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5  mm × 5  mm aperture. Opt. Lett., 30, 2918-2920(2005).

    [42] H. Ishizuki, T. Taira. High energy quasi-phase matched optical parametric oscillation using Mg-doped congruent LiTaO3 crystal. Opt. Express, 18, 253-258(2010).

    [43] H. Ishizuki, T. Taira. Half-joule output optical-parametric oscillation by using 10-mm-thick periodically poled Mg-doped congruent LiNbO3. Opt. Express, 20, 20002-20010(2012).

    [44] K. Mizuuchi, A. Morikawa, T. Sugita, K. Yamamoto. Efficient second-harmonic generation of 340-nm light in a 1.4-μm periodically poled bulk MgO:LiNbO3. Jpn. J. Appl. Phys., 42, L90-L91(2003).

    [45] C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, S. Mailis. Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals. Laser Photon. Rev., 6, 526-548(2012).

    [46] Q. Chen, W. P. Risk. Periodic poling of KTiOPO4 using an applied electric field. Electron. Lett., 30, 1516-1517(1994).

    [47] H. Karlsson, F. Laurell. Electric field poling of flux grown KTiOPO4. Appl. Phys. Lett., 71, 3474-3476(1997).

    [48] G. Rosenman, A. Skliar, D. Eger, M. Oron, M. Katz. Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals. Appl. Phys. Lett., 73, 3650-3652(1998).

    [49] C. Canalias, V. Pasiskevicius, F. Laurell. Periodic poling of KTiOPO4: from micrometer to sub-micrometer domain gratings. Ferroelectrics, 340, 27-47(2006).

    [50] C. Canalias, V. Pasiskevicius, R. Clemens, F. Laurell. Submicron periodically poled flux-grown KTiOPO4. Appl. Phys. Lett., 82, 4233-4235(2003).

    [51] C. Canalias, V. Pasiskevicius, M. Fokine, F. Laurell. Backward quasi-phase-matched second-harmonic generation in submicrometer periodically poled flux-grown KTiOPO4. Appl. Phys. Lett., 86, 181105(2005).

    [52] C. Canalias, V. Pasiskevicius. Mirrorless optical parametric oscillator. Nat. Photonics, 1, 459-462(2007).

    [53] L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, E. Lallier. All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion. Appl. Phys. Lett., 79, 904-906(2001).

    [54] S. Kurimura, M. Harada, K. Muramatsu, M. Ueda, M. Adachi, T. Yamada, T. Ueno. Quartz revisits nonlinear optics: twinned crystal for quasi-phase matching. Opt. Mater. Express, 1, 1367-1375(2011).

    [55] J. L. He, G. Z. Luo, H. T. Wang, S. N. Zhu, Y. Y. Zhu, Y. B. Chen, N. B. Ming. Generation of 840  mW of red light by frequency doubling a diode-pumped 1342  nm Nd:YVO4 laser with periodically-poled LiTaO3. Appl. Phys. B, 74, 537-539(2002).

    [56] X. P. Hu, X. Wang, J. L. He, Y. X. Fan, S. N. Zhu, H. T. Wang, Y. Y. Zhu, N. B. Ming. Efficient generation of red light by frequency doubling in a periodically-poled nearly-stoichiometric LiTaO3 crystal. Appl. Phys. Lett., 85, 188-190(2004).

    [57] X. P. Hu, X. Wang, Z. Yan, H. X. Li, J. L. He, S. N. Zhu. Generation of red light at 660  nm by frequency doubling a Nd:YAG laser with periodically-poled stoichiometric LiTaO3. Appl. Phys. B, 86, 265-268(2007).

    [58] R. Thompson, M. Tu, D. Aveline, N. Lundblad, L. Maleki. High power single frequency 780  nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals. Opt. Express, 11, 1709-1713(2003).

    [59] S. Chiow, T. Kovachy, J. M. Hogan, M. A. Kasevich. Generation of 43  W of quasi-continuous 780  nm laser light via high-efficiency, single-pass frequency doubling in periodically poled lithium niobate crystals. Opt. Lett., 37, 3861-3863(2012).

    [60] D. L. Hart, L. Goldberg, W. K. Burns. Red light generation by sum frequency mixing of Er/Yb fibre amplifier output in QPM LiNbO3. Electron. Lett., 35, 52-53(1999).

    [61] J. Boullet, L. Lavoute, A. Desfarges Berthelemot, V. Kermène, P. Roy, V. Couderc, B. Dussardier, A.-M. Jurdyc. Tunable red-light source by frequency mixing from dual band Er/Yb co-doped fiber laser. Opt. Express, 14, 3936-3941(2006).

    [62] P. A. Champert, S. V. Popov, M. A. Solodyankin, J. R. Taylor. 1.4-W red generation by frequency mixing of seeded Yb and Er fiber amplifiers. IEEE Photon. Technol. Lett., 14, 1680-1682(2002).

    [63] J. Melkonian, T. My, F. Bretenaker, C. Drag. High spectral purity and tunable operation of a continuous singly resonant optical parametric oscillator emitting in the red. Opt. Lett., 32, 518-520(2007).

    [64] W. R. Bosenberg, J. I. Alexander, L. E. Myers, R. W. Wallace. 2.5-W, continuous-wave, 629-nm solid-state laser source. Opt. Lett., 23, 207-209(1998).

    [65] G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, R. L. Byer. 42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate. Opt. Lett., 22, 1834-1836(1997).

    [66] N. Pavel, I. Shoji, T. Taira, K. Mizuuchi, A. Morikawa, T. Sugita, K. Yamamoto. Room-temperature, continuous-wave 1-W green power by single-pass frequency doubling in a bulk periodically poled MgO:LiNbO3 crystal. Opt. Lett., 29, 830-832(2004).

    [67] S. V. Tovstonog, S. Kurimura, K. Kitamura. High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalite. Appl. Phys. Lett., 90, 051115(2007).

    [68] S. C. Kumar, G. K. Samanta, M. Ebrahim-Zadeh. High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO:sPPLT. Opt. Express, 17, 13711-13726(2009).

    [69] I. Ricciardi, M. Rosa, A. Rocco, P. Ferraro, P. Natale. Cavity-enhanced generation of 6  W cw second-harmonic power at 532  nm in periodically-poled MgO:LiTaO3. Opt. Express, 18, 10985-10994(2010).

    [70] S. C. Kumar, G. K. Samanta, K. Devi, M. Ebrahim-Zadeh. High-efficiency, multicrystal, single-pass, continuous-wave second harmonic generation. Opt. Express, 19, 11152-11169(2011).

    [71] G. C. Bhar, U. Chatterjee, P. Datta. Enhancement of second harmonic generation by double-pass configuration in barium borate. Appl. Phys. B, 51, 317-319(1990).

    [72] V. Pruneri, R. Koch, P. G. Kazansky, W. A. Clarkson, P. St, J. Russell, D. C. Hanna. 49  mW of cw blue light generated by first-order quasi-phasematched frequency doubling of a diode-pumped 946-nm Nd:YAG laser. Opt. Lett., 20, 2375-2377(1995).

    [73] R. G. Batchko, M. M. Fejer, R. L. Byer, D. Woll, R. Wallenstein, V. Y. Shur, L. Erman. Continuous-wave quasi-phase-matched generation of 60  mW at 465  nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate. Opt. Lett., 24, 1293-1295(1999).

    [74] X. P. Hu, G. Zhao, C. Zhang, Z. D. Xie, J. L. He, S. N. Zhu. High-power, blue-light generation in a dual-structure, periodically poled, stoichiometric LiTaO3 crystal. Appl. Phys. B, 87, 91-94(2007).

    [75] D. Woll, J. Schumacher, A. Robertson, M. A. Tremont, R. Wallenstein, M. Katz, D. Eger, A. Englander. 250  mW of coherent blue 460-nm light generated by single-pass frequency doubling of the output of a mode-locked high-power diode laser in periodically poled KTP. Opt. Lett., 27, 1055-1057(2002).

    [76] P. Xu, K. Li, G. Zhao, S. N. Zhu, Y. Du, S. H. Ji, Y. Y. Zhu, N. B. Ming, L. Luo, K. F. Li, K. W. Cheah. Quasi-phase-matched generation of tunable blue light in a quasi-periodic structure. Opt. Lett., 29, 95-97(2004).

    [77] G. K. Samanta, M. Ebrahim-Zadeh. Continuous-wave, single-frequency, solid-state blue source for the 425–489  nm spectral range. Opt. Lett., 33, 1228-1230(2008).

    [78] C.-M. Lai, I.-N. Hu, Y.-Y. Lai, Z.-X. Huang, L.-H. Peng, A. Boudrioua, A.-H. Kung. Upconversion blue laser by intracavity frequency self-doubling of periodically poled lithium tantalate parametric oscillator. Opt. Lett., 35, 160-162(2010).

    [79] J. Zimmermann, J. Struckmeier, M. R. Hofmann, J. Meyn. Tunable blue laser based on intracavity frequency doubling with a fan-structured periodically poled LiTaO3 crystal. Opt. Lett., 27, 604-606(2002).

    [80] J. D. Vance, C. Y. She, H. Moosmüller. Continuous-wave, all-solid-state, single-frequency 400-mW source at 589  nm based on doubly resonant sum-frequency mixing in a monolithic lithium niobate resonator. Appl. Opt., 37, 4891-4896(1998).

    [81] J. Yue, C.-Y. She, B. P. Williams, J. D. Vance, P. E. Acott, T. D. Kawahara. Continuous-wave sodium D2 resonance radiation generated in single-pass sum-frequency generation with periodically poled lithium niobate. Opt. Lett., 34, 1093-1095(2009).

    [82] A. J. Tracy, C. Lopez, A. Hankla, D. J. Bamford, D. J. Cook, S. J. Sharpe. Generation of high-average-power visible light in periodically poled nearly stoichiometric lithium tantalite. Appl. Opt., 48, 964-968(2009).

    [83] E. Mimoun, L. Sarlo, J. Zondy, J. Dalibard, F. Gerbier. Sum-frequency generation of 589  nm light with near-unit efficiency. Opt. Express, 16, 18684-18691(2008).

    [84] L. N. Zhao, J. Su, X. P. Hu, X. J. Lv, Z. D. Xie, G. Zhao, P. Xu, S. N. Zhu. Single-pass sum-frequency-generation of 589-nm yellow light based on dual-wavelength Nd:YAG laser with periodically-poled LiTaO3 crystal. Opt. Express, 18, 13331-13336(2010).

    [85] Y. F. Chen, S. W. Tsai, S. C. Wang, Y. C. Huang, T. C. Lin, B. C. Wong. Efficient generation of continuous-wave yellow light by single-pass sum-frequency mixing of a diode-pumped Nd:YVO4 dual-wavelength laser with periodically poled lithium niobate. Opt. Lett., 27, 1809-1811(2002).

    [86] Y. F. Chen. Cw dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser. Appl. Phys. B., 70, 475-478(2000).

    [87] D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, J. R. Taylor. Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589  nm. Opt. Express, 13, 6772-6776(2005).

    [88] Y. Yuan, L. Zhang, Y. H. Liu, X. J. Lu, G. Zhao, Y. Feng, S. N. Zhu. Sodium guide star laser generation by single-pass frequency doubling in a periodically poled near-stoichiometric LiTaO3 crystal. Sci. China Ser. B, 56, 125-128(2013).

    [89] R. T. White, I. T. McKinnie, S. D. Butterworth, G. W. Baxter, D. M. Warrington, P. G. R. Smith, G. W. Ross, D. C. Hanna. Tunable single-frequency ultraviolet generation from a continuous-wave Ti:sapphire laser with an intracavity PPLN frequency doubler. Appl. Phys. B, 77, 547-550(2003).

    [90] K. Mizuuchi, T. Sugita, K. Yamamoto. Generation of 360-nm ultraviolet light in first-order periodically poled bulk MgO:LiNbO3. Opt. Lett., 28, 935-937(2003).

    [91] J.-P. Meyn, M. M. Fejer. Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalite. Opt. Lett., 22, 1214-1216(1997).

    [92] K. Mizuuchi, K. Yamamoto. Generation of 340-nm light by frequency doubling of a laser diode in bulk periodically poled LiTaO3. Opt. Lett., 21, 107-109(1996).

    [93] P. A. Champert, S. V. Popov, J. R. Taylor, J. P. Meyn. Efficient second-harmonic generation at 384  nm in periodically poled lithium tantalate by use of a visible Yb-Er-seeded fiber source. Opt. Lett., 25, 1252-1254(2000).

    [94] Z. W. Liu, S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, J. L. He, C. Zhang, H. T. Wang, N. B. Ming, X. Y. Liang, Z. Y. Xu. Quasi-Cw ultraviolet generation in a dual-periodic LiTaO3 superlattice by frequency tripling. Jpn. J. Appl. Phys., 40, 6841-6844(2001).

    [95] S. Wang, V. Pasiskevicius, J. Hellstrã, F. Laurell, H. Karlsson. First-order type II quasi-phase-matched UV generation in periodically poled KTP. Opt. Lett., 24, 978-980(1999).

    [96] S. Wang, V. Pasiskevicius, F. Laurell, H. Karlsson. Ultraviolet generation by first-order frequency doubling in periodically poled KTiOPO4. Opt. Lett., 23, 1883-1885(1998).

    [97] B. Zhang, Y. J. Ding, I. B. Zotova. Efficient ultrafast ultraviolet generation based on frequency doubling in short-period periodically-poled KTiOPO4 crystal. Appl. Phys. B, 99, 629-632(2010).

    [98] E. G. Víllora, K. Shimamura, K. Sumiya, H. Ishibashi. Birefringent and quasi phase-matching with BaMgF4for vacuum-UV/UV and mid-IR all solid-state lasers. Opt. Express, 17, 12362-12378(2009).

    [99] D. Shechtman, I. Blech, D. Gratias, J. W. Cahn. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett., 53, 1951-1953(1984).

    [100] J. Feng, Y. Y. Zhu, N. B. Ming. Harmonic generation in an optical Fibonacci superlattice. Phys. Rev. B, 41, 5578-5582(1990).

    [101] B. Y. Gu, B. Z. Dong, Y. Zhang, G. Z. Yang. Enhanced harmonic generation in aperiodic optical superlattice. Appl. Phys. Lett., 75, 2175-2177(1999).

    [102] H. Liu, S. N. Zhu, Y. Y. Zhu, N. B. Ming, X. C. Lin, W. J. Ling, A. Y. Yao, Z. Y. Xu. Multiple-wavelength second-harmonic generation in aperiodic optical superlattices. Appl. Phys. Lett., 81, 3326-3328(2002).

    [103] M. H. Chou, K. R. Parameswaran, M. M. Fejer. Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structure in LiNbO3 waveguides. Opt. Lett., 24, 1157-1159(1999).

    [104] V. Berger. Nonlinear photonic crystals. Phys. Rev. Lett., 81, 4136-4139(1998).

    [105] B. Q. Ma, T. Wang, Y. Sheng, P. G. Ni, Y. Q. Wang, B. Y. Cheng, D. Z. Zhang. Quasiphase matched harmonic generation in a two-dimensional octagonal photonics superlattice. Appl. Phys. Lett., 87, 251103(2005).

    [106] L. H. Peng, C. C. Hsu, Y. C. Shih. Second-harmonic green generation from two-dimensional х(2) nonlinear photonic crystal with orthorhombic lattice structure. Appl. Phys. Lett., 83, 3447-3449(2003).

    [107] R. K. P. Zia, W. J. Dallas. A simple derivation of quasi-crystalline spectra. J. Phys. A, 18, L341-L345(1985).

    [108] S. N. Zhu, Y. Y. Zhu, N. B. Ming. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice. Science, 278, 843-846(1997).

    [109] K. Yamamoto, H. Yamamoto, T. Taniuchi. Simultaneous sum-frequency and second-harmonic generation from a proton-exchanged MgO-doped LiNbO3 waveguide. Appl. Phys. Lett., 58, 1227-1229(1991).

    [110] F. Laurell, J. B. Brown, J. D. Bierlein. Simultaneous generation of UV and visible light in segmented KTP waveguides. Appl. Phys. Lett., 62, 1872-1874(1993).

    [111] M. L. Sundheimer, A. Villeneuve, G. I. Stegeman, J. D. Bierlein. Simultaneous generation of red, green and blue light in a segmented KTP waveguide using a single source. Electron. Lett., 30, 975-976(1994).

    [112] P. Baldi, C. G. Trevino-Palacios, G. I. Stegeman, M. P. De Micheli, D. B. Ostrowsky, D. Delacourt, M. Papuchon. Simultaneous generation of red, green and blue light in room temperature periodically poled lithium niobate waveguides using single source. Electron. Lett., 31, 1350-1351(1995).

    [113] E. Cantelar, G. A. Torchia, J. A. Sanz-García, P. L. Pernas, G. Lifante, F. Cusso. Red, green, and blue simultaneous generation in aperiodically poled Zn-diffused LiNbO3:Er3+/Yb3+ nonlinear channel waveguides. Appl. Phys. Lett., 83, 2991-2993(2003).

    [114] D. Jaque, J. Capmany, J. G. Sole. Red, green, and blue laser light from a single Nd:YAl3(BO3)4 crystal based on laser oscillation at 1.3  μm. Appl. Phys. Lett., 75, 325-327(1999).

    [115] J. J. Romero, D. Jaque, J. F. Sole, A. A. Kaminskii. Simultaneous generation of coherent light in the three fundamental colors by quasicylindrical ferroelectric domains in Sr0.6Ba0.4(NbO3)2. Appl. Phys. Lett., 81, 4106-4108(2002).

    [116] J. Capmany. Simultaneous generation of red, green, and blue continuous-wave laser radiation in Nd3+-doped aperiodically poled lithium niobate. Appl. Phys. Lett., 78, 144-146(2001).

    [117] J. L. He, J. Liao, H. Liu, J. Du, F. Xu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, N. B. Ming. Simultaneous cw red, yellow, and green light generation, “traffic signal lights,” by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3. Appl. Phys. Lett., 83, 228-230(2003).

    [118] J. Liao, J. L. He, H. Liu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, N. B. Ming. Simultaneous generation of red, green, and blue quasi-continuous-wave coherent radiation based on multiple quasi-phase-matched interactions from a single, aperiodically-poled LiTaO3. Appl. Phys. Lett., 82, 3159-3161(2003).

    [119] H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang, Y. Y. Zhu, N. B. Ming, J. L. He. 530-mW quasi-white-light generation using all-solid-state laser technique. J. Appl. Phys., 96, 7756-7758(2004).

    [120] X. P. Hu, G. Zhao, Z. Yan, X. Wang, Z. D. Gao, H. Liu, J. L. He, S. N. Zhu. High-power red-green-blue laser light source based on intermittent oscillating dual-wavelength Nd:YAG laser with a cascaded LiTaO3 superlattice. Opt. Lett., 33, 408-410(2008).

    [121] X. W. Fan, J. L. He, H. T. Huang, L. Xue. An intermittent oscillation dual-wavelength diode-pumped Nd:YAG laser. IEEE J. Quantum Electron., 43, 884-888(2007).

    [122] B. Henrich, T. Herrmann, J. Kleilbauer, R. Knappe, A. Nebel, R. Wallenstein. Concepts and technologies of advanced RGB sources. Advanced Solid-State Lasers Conference, 179-181(2002).

    [123] Z. W. Liu, S. N. Zhu, Y. Y. Zhu, H. Liu, Y. Q. Lu, H. T. Wang, N. B. Ming, X. Y. Liang, Z. Y. Xu. A scheme to realize three-fundamental-colors laser based on quasi-phase matching. Solid State Commun., 119, 363-366(2001).

    [124] Z. D. Gao, S. N. Zhu, S. Y. Tu, A. H. Kung. Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalite. Appl. Phys. Lett., 89, 181101(2006).

    [125] P. Xu, L. N. Zhao, X. J. Lv, J. Lu, Y. Yuan, G. Zhao, S. N. Zhu. Compact high-power red-green-blue laser light source generation from a single lithium tantalate with cascaded domain modulation. Opt. Express, 17, 9509-9514(2009).

    [126] S. T. Lin, Y. Y. Lin, R. Y. Tu, T. D. Wang, Y. C. Huang. Fiber-laser-pumped CW OPO for red, green, blue laser generation. Opt. Express, 18, 2361-2367(2010).

    [127] R. S. Cudney, M. Robles-Agudo, L. A. Rois. RGB source based on simultaneous quasi-phasematched second and third harmonic generation in periodically poled lithium niobate. Opt. Express, 14, 10663-10668(2006).

    [128] P. Xu, Z. D. Xie, H. Y. Leng, J. S. Zhao, J. F. Wang, X. Q. Yu, Y. Q. Qin, S. N. Zhu. Frequency self-doubling optical parametric amplification: noncollinear red–green–blue light-source generation based on a hexagonally poled lithium tantalite. Opt. Lett., 33, 2791-2793(2008).

    [129] L. N. Zhao, Z. Qi, Y. Yuan, J. Lu, Y. H. Liu, C. D. Chen, X. J. Lv, Z. D. Xie, X. P. Hu, G. Zhao, P. Xu, S. N. Zhu. Integrated noncollinear red–green–blue laser light source using a two-dimensional nonlinear photonic quasicrystal. J. Opt. Soc. Am. B, 28, 608-612(2011).

    [130] L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg. Quasi-phase-matched 1.064-μm-pumped optical parametric oscillator in bulk periodically poled LiNbO3. Opt. Lett., 20, 52-54(1995).

    [131] M. L. Bortz, M. A. Arbore, M. M. Fejer. Quasi-phase-matched optical parametric amplification and oscillation in periodically poled LiNbO3 waveguides. Opt. Lett., 20, 49-51(1995).

    [132] A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, C. Canalias. 5  mm thick periodically poled Rb-doped KTP for high energy optical parametric frequency conversion. Opt. Mater. Express, 1, 201-206(2011).

    [133] V. Pruneri, S. D. Butterworth, D. C. Hanna. Low-threshold picosecond optical parametric oscillation in quasi-phase-matched lithium niobate. Appl. Phys. Lett., 69, 1029-1031(1996).

    [134] A. Galvanauskas, M. A. Arbore, M. M. Fejer, M. E. Fermann, D. Harter. Fiber-laser-based femtosecond parametric generator in bulk periodically poled LiNbO3. Opt. Lett., 22, 105-107(1997).

    [135] S. D. Butterworth, P. G. R. Smith, D. C. Hanna. Picosecond Ti:sapphire-pumped optical parametric oscillator based on periodically poled LiNbO3. Opt. Lett., 22, 618-620(1997).

    [136] S. Chaitanya Kumar, M. Ebrahim-Zadeh. High-power, fiber-laser-pumped, picosecond optical parametric oscillator based on MgO:sPPLT. Opt. Express, 19, 26660-26665(2011).

    [137] C. W. Hoyt, M. Sheik-Bahae, M. Ebrahim-Zadeh. High-power picosecond optical parametric oscillator based on periodically poled lithium niobate. Opt. Lett., 27, 1543-1545(2002).

    [138] M. V. O’Connor, M. A. Watson, D. P. hepherd, D. C. Hanna, J. H. V. Price, A. Malinowski, J. Nilsson, N. G. R. Broderick, D. J. Richardson, L. Lefort. Synchronously pumped optical parametric oscillator driven by a femtosecond mode-locked fiber laser. Opt. Lett., 27, 1052-1054(2002).

    [139] T. Sudmeyer, J. Aus der Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, D. C. Hanna. Femtosecond fiber-feedback optical parametric osicalltor. Opt. Lett., 26, 304-306(2001).

    [140] N. Coluccelli, H. Fonnum, M. Haakestad, A. Gambetta, D. Gatti, M. Marangoni, P. Laporta, G. Galzerano. 25-MHz synchronously pumped optical parametric oscillator at 2.25-2.6 um and 4.1-4.9  μm. Opt. Express, 20, 22042-22047(2012).

    [141] L. E. Myers, S. A. Payne, C. R. Pollock, W. R. Bosenberg, J. I. Alexander, M. A. Arbore, M. M. Fejer, R. L. Byer. CW singly resonant optical parametric oscillators based on 1.064-um pumped periodically poled LiNbO3. Proceedings on Advanced Solid State Lasers, 35-37(1996).

    [142] S. C. Kumar, R. Das, G. K. Samanta, M. Ebrahim-Zadeh. Optimally-output-coupled, 17.5  W, fiber-laser-pumped continuous-wave optical parametric oscillator. Appl. Phys. B., 102, 31-35(2011).

    [143] R. Sowade, I. Breunig, J. Kiessling, K. Buse. Influence of the pump threshold on the single-frequency output power of singly resonant optical parametric oscillators. Appl. Phys. B., 96, 25-28(2009).

    [144] R. Das, S. C. Kumar, G. K. Samanta, M. Ebrahim-Zadeh. Broadband, high-power, continuous-wave, mid-infrared source using extended phase-matching bandwidth in MgO:PPLN. Opt. Lett., 34, 3836-3838(2009).

    [145] U. Strossner, J. P. Meyn, R. Wallenstein, P. Urenski, A. Arie, G. Roseman, J. Mlynek, S. Schiller, A. Peters. Single-frequency continuous-wave optical parametric oscillator system with an ultrawide tuning range of 550 to 2830  nm. J. Opt. Soc. Am. B, 19, 1419-1424(2002).

    [146] T. Petelski, R. S. Conroy, K. Bencheikh, J. Mlynek, S. Schiller. All-soild-state, tunable, single-frequency source of yellow light for high-resolution spectroscopy. Opt. Lett., 26, 1013-1015(2001).

    [147] J. R. Schwesyg, C. R. Phillips, K. Ioakeimidi, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, M. M. Fejer. Suppression of mid-infrared light absorption in undoped congruent lithium niobate crystals. Opt. Lett., 35, 1070-1072(2010).

    [148] K. A. Stankov, J. Jethwa. A new mode-locking technique using a nonlinear mirror. Opt. Commun., 66, 41-46(1988).

    [149] G. Cerullo, S. De Silvestri, A. Monguzzi, D. Segaka, V. Magni. Self-starting mode-locking of a CW Nd:YAG laser using cascaded second-order nonlinearities. Opt. Lett., 20, 746-748(1995).

    [150] Y. F. Chen, S. W. Tsai, S. C. Wang. High-power diode-pumped nonlinear mirror mode-locked Nd:YVO4 laser with periocailly-poled KTP. Appl. Phys. B, 72, 395-397(2001).

    [151] S. J. Holmgren, V. Pasiskevicius, F. Laurell. Generation of 2.8  ps pulses by mode-locking a Nd:GdVO4 laser with defocusing cascaded Kerr lensing in periodically poled KTP. Opt. Express, 13, 5270-5278(2005).

    [152] H. Iliev, I. Buchvarov, S. Kurimura, V. Petrov. High-power picosecond Nd:GdVO4 laser mode locked by SHG in periodically poled stoichiometric lithium tantalite. Opt. Lett., 35, 1016-1018(2010).

    [153] S. J. Holmgren, A. Fragemann, V. Pasiskevicius, F. Laurell. Active and passive hybrid mode-locking of a Nd:YVO4 laser with a single partially poled KTP crystal. Opt. Express, 14, 6675-6680(2006).

    [154] H. Iliev, D. Chuchumishev, I. Buchvarov, V. Petrov. Passive mode-locking of a diode-pumped Nd:YVO4 laser by intracavity SHG in PPKTP. Opt. Express, 18, 5754-5762(2010).

    [155] Y. H. Liu, Z. D. Xie, S. D. Pan, X. J. Lv, Y. Yuan, X. P. Hu, J. Lu, L. N. Zhao, C. D. Chen, G. Zhao, S. N. Zhu. Diode-pumped passively mode-locked Nd:YVO4 laser at 1342  nm with periodically poled LiTaO3. Opt. Lett., 36, 698-700(2011).

    [156] H. Iliev, I. Buchvarov, S. Kurimura, V. Petrov. 1.34-μm Nd:YVO4 laser mode-locked by SHG-lens formation in periodically-poled stoichiometric lithium tantalite. Opt. Express, 19, 21754-21759(2011).

    [157] V. Y. Shur. Domain nanotechnology in ferroelectric single crystals: lithium niobate and lithium tantalate family. Ferroelectrics, 443, 71-82(2013).

    [158] J. J. Li, Z. Y. Li, D. Z. Zhang. Second harmonic generation in one-dimensional nonlinear photonic crystals solved by the transfer matrix method. Phys. Rev. E, 75, 056606(2007).

    [159] P. Xu, S. N. Zhu. Quasi-phase-matching engineering of entangled photons. AIP Adv., 2, 041401(2012).

    [160] Y. B. Yu, Z. D. Xie, X. Q. Yu, H. X. Li, P. Xu, H. M. Yao, S. N. Zhu. Generation of three-mode continuous-variable entanglement by cascaded nonlinear interactions in a quasiperiodic superlattice. Phys. Rev. A, 74, 042332(2006).

    [161] X. Q. Yu, P. Xu, Z. D. Xie, J. F. Wang, H. Y. Leng, J. S. Zhao, S. N. Zhu, N. B. Ming. Transforming spatial entanglement using a domain-engineering technique. Phys. Rev. Lett., 101, 233601(2008).

    [162] H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, S. N. Zhu. On-chip steering of entangled photons in nonlinear photonic crystals. Nat. Commun., 2, 429(2011).

    [163] P. Xu, H. Y. Leng, Z. H. Zhu, Y. F. Bai, H. Jin, Y. X. Gong, X. Q. Yu, Z. D. Xie, S. Y. Mu, S. N. Zhu. Lensless imaging by entangled photons from quadratic nonlinear photonic crystals. Phys. Rev. A, 86, 013805(2012).

    [164] H. Jin, P. Xu, J. S. Zhao, H. Y. Leng, M. L. Zhong, S. N. Zhu. Observation of quantum Talbot effect from a domain-engineered nonlinear photonic crystal. Appl. Phys. Lett., 101, 211115(2012).

    [165] Y. F. Bai, P. Xu, Z. D. Xie, Y. X. Gong, S. N. Zhu. Mode-locked biphoton generation by concurrent quasi-phase-matching. Phys. Rev. A, 85, 053807(2012).

    [166] S. E. Harris. Chirp and compress: toward single-cycle biphotons. Phys. Rev. Lett., 98, 063602(2007).

    CLP Journals

    [1] Baitao Zhang, Jian Ning, Zhaowei Wang, Kezhen Han, Jingliang He. High power red laser generation by second harmonic generation with GTR-KTP crystal[J]. Chinese Optics Letters, 2015, 13(5): 051402

    [2] Guang-Zhen Li, Yu-Ping Chen, Hao-Wei Jiang, Xian-Feng Chen. Enhanced Kerr electro-optic nonlinearity and its application in controlling second-harmonic generation[J]. Photonics Research, 2015, 3(4): 168

    [3] Yaping Shang, Meili Shen, Peng Wang, Xiao Li, Xiaojun Xu. Amplified random fiber laser-pumped mid-infrared optical parametric oscillator[J]. Chinese Optics Letters, 2016, 14(12): 121901

    [4] Ying Li, Yuhai Liang, Dahua Dai, Jianlong Yang, Haizhe Zhong, Dianyuan Fan. Frequency-domain parametric downconversion for efficient broadened idler generation[J]. Photonics Research, 2017, 5(6): 669

    [5] Hao Hu, Liangliang Liu, Xiao Hu, Dongjue Liu, Dongliang Gao. Routing emission with a multi-channel nonreciprocal waveguide[J]. Photonics Research, 2019, 7(6): 642

    [6] Yunfei Niu, Lei Yang, Dongjie Guo, Yan Chen, Xiaoyang Li, Gang Zhao, Xiaopeng Hu. Efficient 671 nm red light generation in annealed proton-exchanged periodically poled LiNbO3 waveguides[J]. Chinese Optics Letters, 2020, 18(11): 111902

    X. P. Hu, P. Xu, S. N. Zhu. Engineered quasi-phase-matching for laser techniques [Invited][J]. Photonics Research, 2013, 1(4): 171
    Download Citation