• Journal of Inorganic Materials
  • Vol. 36, Issue 2, 140 (2021)
Huajing FANG1, Zetian ZHAO1, Wenting WU1, and Hong WANG2、*
Author Affiliations
  • 11. School of Material Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
  • 22. Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
  • show less
    DOI: 10.15541/jim20200073 Cite this Article
    Huajing FANG, Zetian ZHAO, Wenting WU, Hong WANG. Progress in Flexible Electrochromic Devices[J]. Journal of Inorganic Materials, 2021, 36(2): 140 Copy Citation Text show less
    W18O49 nanowires and Ag NWs by solvothermal preparation co-assembled on PET substrate to obtain flexible color-changing film[4]
    1. W18O49 nanowires and Ag NWs by solvothermal preparation co-assembled on PET substrate to obtain flexible color-changing film[4]
    Flexible sensor based on prussian blue[29]
    2. Flexible sensor based on prussian blue[29]
    Flexible ECD based on PEDOT:PSS_PD electrodes[39]
    3. Flexible ECD based on PEDOT:PSS_PD electrodes[39]
    Flexible multicolor ECD based on viologen[44]
    4. Flexible multicolor ECD based on viologen[44]
    Electrochromic performance of the Ag grid/PEDOT: PSS/WO3 film after bending[52]
    5. Electrochromic performance of the Ag grid/PEDOT: PSS/WO3 film after bending[52]
    ECD on household PE cling wrap[61]
    6. ECD on household PE cling wrap[61]
    Stretchable electrochromic supercapacitor[65]
    7. Stretchable electrochromic supercapacitor[65]
    MaterialsSwitching time/sColoration efficiency/(cm2·C-1)Transmittance modulation/%Stability/cyclesBending radius/mmRef.
    W18O4910.3/7.435.760100012[4]
    WO3/Ag/WO311/10.513653300015[10]
    WO33.5/8.460.173.32005[11]
    WO3-NiVOx6/5-42800075[15]
    WO330139491000-[16]
    WO39/1958.9589.73002[17]
    MoO36.2/10.934.727.715011[19]
    NiOx-WO3-20-356012536[22]
    WO3-ZnO6.2/2.880.668.2--[23]
    Prussian blue -WO3<10-52.42250-[28]
    Table 1. Performance comparison of inorganic FECD
    MaterialsSwitching time/sColoration efficiency/(cm2·C-1)Transmittance modulation/%StabilityBending radius/mmRef.
    PANI40/2022.934200 cycles6[34]
    PANI3.9/2.6180.949500 cycles10[35]
    PEDOT4.1/3.4-2110000 cycles20[38]
    PEDOT: PSS4.6/2429454000 cycles-[39]
    ethyl viologen41/395117.792.160000 s12.5[43]
    monoheptyl-viologen/diheptylviologen/diphenyl-viologen20/3487.3253600 s10[44]
    FeL3.6/7.3299.841250 cycles-[47]
    MEPE2/2644540.1-10[48]
    Poly[Ni(salen)]-type polymer157/145130.488.73000 cycles-[49]
    Table 2. Performance comparison of organic FECD
    MaterialsSwitching time/sColoration efficiency/(cm2·C-1)Transmittance modulation/%Stability/cyclesBending radius/mmRef.
    W18O49 NWs-PEDOT:PSS18.2/6.6118.134.3-2.5[50]
    PEDOT:PSS-WO31.9/2.8124.581.9200020[52]
    WO3·2H2O-PEDOT4.4/2.6180.263.1--[53]
    Viologen-TiO28/6226531000-[54]
    Ag NW/Ni(OH)2-PEIE/PEDOT:PSS0.3/0.6517301001[55]
    Table 3. Performance comparison of inorganic/organic composite FECD
    MaterialsSwitching time/sColoration efficiency/(cm2·C-1)Transmittance modulation/%StabilityBending radius/mmRef.
    WO3/Ag/PEDOT:PSS/WO31.82/0.75-2330000 s5[61]
    Heptyl Viologen32/4331.8274.5100 cycles4.8[63]
    WO3 nanotube / PEDOT: PSS<1083.937.720000 cycles40[65]
    WO3-PANI4.1/2.175.540500 cycles5[66]
    poly(3-methylthiophene)/Prussian blue1.3/1.2201.617.8180 cycles2.5[67]
    copolymer DFTPA-PI-MA5.3/12.282.260100 cycles-[69]
    Table 4. Performance comparison of stretchable electrochromic devices
    Huajing FANG, Zetian ZHAO, Wenting WU, Hong WANG. Progress in Flexible Electrochromic Devices[J]. Journal of Inorganic Materials, 2021, 36(2): 140
    Download Citation