• Chinese Journal of Lasers
  • Vol. 50, Issue 22, 2208001 (2023)
Xinkai Feng1、2, Huaixi Chen1, Jiaying Chen1、2, and Wanguo Liang1、*
Author Affiliations
  • 1Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujiang, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/CJL230448 Cite this Article Set citation alerts
    Xinkai Feng, Huaixi Chen, Jiaying Chen, Wanguo Liang. Study of Fiber-Coupled Periodically Poled Lithium Niobate Thin Film Waveguide Devices[J]. Chinese Journal of Lasers, 2023, 50(22): 2208001 Copy Citation Text show less
    References

    [1] Sun J, Hao Y X, Zhang L et al. Brief review of lithium niobate crystal and its applications[J]. Journal of Synthetic Crystals, 49, 947-964(2020).

    [2] Song S, Lin H Y, Shi W J et al. Small yellow-green Nd∶YAG/PPMgLN laser module at 561.3 nm[J]. Optik, 232, 166557(2021).

    [3] Fedorova K A, Sokolovskii G S, Khomylev M et al. Efficient yellow-green light generation at 561  nm by frequency-doubling of a QD-FBG laser diode in a PPLN waveguide[J]. Optics Letters, 39, 6672-6674(2014).

    [4] Chen H X, Huang H Z, Cheng J X et al. Broadband yellow-orange light generation based on a step-chirped PPMgLN ridge waveguide[J]. Optics Express, 30, 32110-32118(2022).

    [5] Liu X, Zeng X T, Shi W J et al. Application of a novel Nd∶YAG/PPMgLN laser module speckle-suppressed by multi-mode fibers in an exhibition environment[J]. Photonics, 9, 46(2022).

    [6] Zhang B, Xu C Q. Compact, and efficient continues wave intra-cavity frequency doubling Nd∶YVO4/MgO: PPLN 542/543 nm green lasers[J]. Optics & Laser Technology, 122, 105885(2020).

    [7] Hisai Y, Nishida Y, Miyazawa H et al. Generation of 116 mW output power at 461 nm in a periodically poled lithium niobate waveguide[J]. Japanese Journal of Applied Physics, 61, 020701(2022).

    [8] Niu Y R, Yan X, Chen J X et al. Research progress on periodically poled lithium niobate for nonlinear frequency conversion[J]. Infrared Physics & Technology, 125, 104243(2022).

    [9] Liu J, Duan Y M, Li Z H et al. Recent progress in nonlinear frequency conversion of optical vortex lasers[J]. Frontiers in Physics, 10, 865029(2022).

    [10] Zhang M, Wang C, Kharel P et al. Integrated lithium niobate electro-optic modulators: when performance meets scalability[J]. Optica, 8, 652-667(2021).

    [11] Levy M, Osgood R M, Liu R et al. Fabrication of single-crystal lithium niobate films by crystal ion slicing[J]. Applied Physics Letters, 73, 2293-2295(1998).

    [12] Nishida Y, Miyazawa H, Asobe M et al. Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature[J]. Electronics Letters, 39, 609-611(2003).

    [13] Rabiei P, Gunter P. Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding[J]. Applied Physics Letters, 85, 4603-4605(2004).

    [14] Hu H, Gui L, Ricken R et al. Towards nonlinear photonic wires in lithium niobate[J]. Proceedings of SPIE, 7604, 76040R(2010).

    [15] Lin J T, Farajollahi S, Fang Z W et al. Electro-optic tuning of a single-frequency ultranarrow linewidth microdisk laser[J]. Advanced Photonics, 4, 036001(2022).

    [16] Zhu Y R, Zhou Y, Wang Z et al. Electro-optically tunable microdisk laser on Er3+-doped lithium niobate thin film[J]. Chinese Optics Letters, 20, 011303(2022).

    [17] Lu Y Q, Xiao M, Peng R W et al. Research advances on quantum and quantum-like effects in artificial microstructures and multi-function integrated photonic chip[J]. China Basic Science, 22, 11-24(2020).

    [18] Liu S J, Zheng Y L, Chen X F. Nonlinear frequency conversion in lithium niobate thin films[J]. Acta Optica Sinica, 41, 0823013(2021).

    [19] Qiao L L, Wang M, Wu R B et al. Ultra-low loss lithium niobate photonics[J]. Acta Optica Sinica, 41, 0823012(2021).

    [20] Zhu X S, Liu J, He J Z et al. Research and application of metasurfaces in quantum optics[J]. Acta Optica Sinica, 42, 0327006(2022).

    [21] Ji X W, Cui J M, Feng L H et al. Ring resonator pressure sensor based on LNOI[J]. Laser & Optoelectronics Progress, 59, 0323001(2022).

    [22] Guo L, Chen H X, Zhang X B et al. Broadband yellow-orange laser output based on chirp structure MgO∶PPLN sum-frequency[J]. Laser & Optoelectronics Progress, 57, 091901(2020).

    [23] Boyd R W[M]. Nonlinear optics(2020).

    [24] Gayer O, Sacks Z, Galun E et al. Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3[J]. Applied Physics B, 91, 343-348(2008).

    [25] Lin J T, Bo F, Cheng Y et al. Advances in on-chip photonic devices based on lithium niobate on insulator[J]. Photonics Research, 8, 1910-1936(2020).

    [26] Kou R, Kurimura S, Kikuchi K et al. High-gain, wide-dynamic-range parametric interaction in Mg-doped LiNbO3 quasi-phase-matched adhered ridge waveguide[J]. Optics Express, 19, 11867-11872(2011).

    [27] Chauvet M, Henrot F, Bassignot F et al. High efficiency frequency doubling in fully diced LiNbO3 ridge waveguides on silicon[J]. Journal of Optics, 18, 085503(2016).

    [28] Cho C Y, Lai J Y, Hsu C S et al. Power scaling of continuous-wave second harmonic generation in a MgO∶PPLN ridge waveguide and the application to a compact wavelength conversion module[J]. Optics Letters, 46, 2852-2855(2021).

    Xinkai Feng, Huaixi Chen, Jiaying Chen, Wanguo Liang. Study of Fiber-Coupled Periodically Poled Lithium Niobate Thin Film Waveguide Devices[J]. Chinese Journal of Lasers, 2023, 50(22): 2208001
    Download Citation