• Laser & Optoelectronics Progress
  • Vol. 58, Issue 8, 0815002 (2021)
Qi Zhang1、2, Bo Ye1、2、*, Siqi Luo1、2, and Honggui Cao1、2
Author Affiliations
  • 1Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
  • 2Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
  • show less
    DOI: 10.3788/LOP202158.0815002 Cite this Article Set citation alerts
    Qi Zhang, Bo Ye, Siqi Luo, Honggui Cao. Aluminum Plate Defect Image Segmentation Using Improved Generative Adversarial Networks for Eddy Current Detection[J]. Laser & Optoelectronics Progress, 2021, 58(8): 0815002 Copy Citation Text show less
    Generator network model
    Fig. 1. Generator network model
    Architecture of attention mechanism
    Fig. 2. Architecture of attention mechanism
    Discriminator network model
    Fig. 3. Discriminator network model
    Aluminum plate defect image segmentation using improved generative adversarial networks for eddy current detection
    Fig. 4. Aluminum plate defect image segmentation using improved generative adversarial networks for eddy current detection
    Eddy current testing experiment platform
    Fig. 5. Eddy current testing experiment platform
    Schematic of test-piece dimension
    Fig. 6. Schematic of test-piece dimension
    Eddy current inspection images of aluminum plate defect
    Fig. 7. Eddy current inspection images of aluminum plate defect
    Segmentation results of different methods. (a) Original image; (b) truth image; (c) Otsu method; (d) FCN-8s model; (e) FCN-32s model; (f) U-Net model; (g) proposed method
    Fig. 8. Segmentation results of different methods. (a) Original image; (b) truth image; (c) Otsu method; (d) FCN-8s model; (e) FCN-32s model; (f) U-Net model; (g) proposed method
    Segmentation results of eddy current testing images under different signal-to-noise ratios. (a) Original image; (b) truth image; (c) Otsu method; (d) FCN-8s model; (e) FCN-32s model; (f) U-Net model; (g) proposed method
    Fig. 9. Segmentation results of eddy current testing images under different signal-to-noise ratios. (a) Original image; (b) truth image; (c) Otsu method; (d) FCN-8s model; (e) FCN-32s model; (f) U-Net model; (g) proposed method
    MethodPrecisionRecallF1
    Otsu0.90060.64520.7518
    FCN-8s0.86400.79100.826
    FCN-32s0.78400.84340.813
    U-Net0.76090.85020.803
    Proposed method0.87990.97750.926
    Table 1. Comparison of segmentation results using different methods
    MethodSignal-to-noise ratioPrecisionRecallF1
    Otsu50 dB0.66480.82590.7366
    60 dB0.85880.79360.8249
    70 dB0.82220.81420.8182
    FCN-8s50 dB0.71200.78350.7460
    60 dB0.81550.89680.8539
    70 dB0.93690.80110.8637
    FCN-32s50 dB0.77730.89620.8325
    60 dB0.73480.90500.8111
    70 dB0.91550.74640.8223
    U-Net50 dB0.69940.79520.7442
    60 dB0.86850.81660.8418
    70 dB0.92360.78820.8505
    Proposed method50 dB0.87250.96940.9184
    60 dB0.86960.98940.9256
    70 dB0.87100.97940.9220
    Table 2. Comparison of segmentation methods for eddy current testing image under different signal-to-noise ratios
    Qi Zhang, Bo Ye, Siqi Luo, Honggui Cao. Aluminum Plate Defect Image Segmentation Using Improved Generative Adversarial Networks for Eddy Current Detection[J]. Laser & Optoelectronics Progress, 2021, 58(8): 0815002
    Download Citation