• Laser & Optoelectronics Progress
  • Vol. 55, Issue 1, 11402 (2018)
Zhu Haihong* and Liao Hailong
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop55.011402 Cite this Article Set citation alerts
    Zhu Haihong, Liao Hailong. Research Status of Selective Laser Melting of High Strength Aluminum Alloy[J]. Laser & Optoelectronics Progress, 2018, 55(1): 11402 Copy Citation Text show less
    References

    [1] Jing G Y, Wei K W, Wang Z M, et al. Microstructure and mechanical property of S-04 steel by selective laser melting[J]. Laser & Optoelectronics Progress, 2016, 53(11): 111404.

    [2] Ding L, Li H X, Wang Y D, et al. Heat treatment on microstructure and tensile strength of 316 stainless steel by selective laser melting[J]. Chinese Journal of Lasers, 2015, 42(4): 0406003.

    [3] Hu Z H, Zhu H H, Zhang H, et al. Experimental investigation on selective laser melting of 17-4PH stainless steel[J]. Optics & Laser Technology, 2017, 87: 17-25.

    [4] Gu D D, Hagedorn Y C, Meiners W, et al. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium[J]. Acta Materialia, 2012, 60(9): 3849-3860.

    [5] Wang Z M, Guan K, Gao M, et al. The microstructure and mechanical properties of deposited-IN718 by selective laser melting[J]. Journal of Alloys and Compounds, 2012, 513: 518-523.

    [6] Thijs L, Kempen K, Kruth J P, et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder[J]. Acta Materialia, 2013, 61(5): 1809-1819.

    [7] Liu W, Liu T T, Liao W H, et al. Study on selective laser melting forming process of cobalt chromium alloy[J]. Chinese Journal of Lasers, 2015, 42(5): 0503001.

    [8] Song C H, Yang Y Q, Wang Y D, et al. Research on process and property of CoCrMo alloy directly manufactured by selective laser melting[J]. Chinese Journal of Lasers, 2014, 41(6): 0603001.

    [9] Louvis E, Fox P, Sutcliffe C J. Selective laser melting of aluminium components[J]. Journal of Materials Processing Technology, 2011, 211(2): 275-284.

    [10] Dong P, Li Z H, Yan Z Y, et al. Research status of selective laser melting of aluminum alloys[J]. Applied Laser, 2015, 35(5): 607-611.

    [11] Dai S L, Zhang K, Yang S J, et al. Advanced aeronautical aluminum alloy materials technology and application[M]. Beijing: National Defend Industry Press, 2012: 1-9.

    [12] Bartkowiak K, Ullrich S, Frick T, et al. New developments of laser processing aluminium alloys via additive manufacturing technique[J]. Physics Procedia, 2011, 12(1): 393-401.

    [13] Karg M, Ahuja B, Schaub A, et al. Effect of process conditions on mechanical behavior of aluminium wrought alloy EN AW-2618 additively manufactured by laser beam melting in powder bed[C]. 8th International WLT Conference on Lasers in Manufacturing, 2015: 22-25.

    [14] Karg M C H, Ahuja B, Wiesenmayer S, et al. Effects of process conditions on the mechanical behavior of aluminium wrought alloy EN AW-2219 (AlCu6Mn) additively manufactured by laser beam melting in powder bed[J]. Micromachines, 2017, 8(1): 23.

    [15] Karg M C H, Ahuja B, Kuryntsev S, et al. Processability of high strength aluminium-copper alloys AW-2022 and 2024 by laser beam melting in powder bed[C]. Proceedings of the Solid Freeform Fabrication Symposium, 2014: 4-6.

    [16] Zhang H, Nie X J, Zhu H H, et al. Study on high strength Al-Cu-Mg alloy fabricated by selective laser melting[J]. Chinese Journal of Lasers, 2016, 43(5): 0503007.

    [17] Zhang H H, Zhu H, Nie X J, et al. Effect of zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy[J]. Scripta Materialia, 2017, 134: 6-10.

    [18] Kaufmann N, Imran M, Wischeropp T M, et al. Influence of process parameters on the quality of aluminium alloy EN AW 7075 using selective laser melting (SLM)[J]. Physics Procedia, 2016, 83: 918-926.

    [19] Reschetnik W, Brüggemann J P, Aydinz M E, et al. Fatigue crack growth behavior and mechanical properties of additively processed EN AW-7075 aluminium alloy[J]. Procedia Structural Integrity, 2016, 2: 3040-3048.

    [20] Sistiaga M L M, Mertens R, Vrancken B, et al. Changing the alloy composition of Al7075 for better processability by selective laser melting[J]. Journal of Materials Processing Technology, 2016, 238: 437-445.

    [21] Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549(7672): 365-369.

    [22] Qi T, Zhu H, Zhang H, et al. Selective laser melting of Al7050 powder:melting mode transition and comparison of the characteristics between the keyhole and conduction mode[J]. Materials & Design, 2017, 135: 257-266.

    [23] Spierings A B, Dawson K, Voegtlin M, et al. Microstructure and mechanical properties of as-processed scandium-modified aluminium using selective laser melting[J]. CIRP Annals, 2016, 65(1): 213-216.

    [24] Spierings A B, Dawson K, Kern K, et al. SLM-processed Sc-and Zr-modified Al-Mg alloy: mechanical properties and microstructural effects of heat treatment[J]. Materials Science and Engineering: A, 2017, 701: 264-273.

    [25] Buchbinder D, Meiners W, Wissenbach K, et al. Selective laser melting of aluminium die-cast alloy[C]. Fraunhofer Direct Digital Manufacturing Conference, 2014: 6.

    [26] Spierings A B, Dawson K, Heeling T, et al. Microstructural features of Sc-and Zr-modified Al-Mg alloys processed by selective laser melting[J]. Materials & Design, 2017, 115: 52-63.

    [27] Li R D, Wang M B, Yuan T C, et al. Selective laser melting of a novel Sc and Zr modified Al-6.2 Mg alloy: processing, microstructure, and properties[J]. Powder Technology, 2017, 319: 117-128.

    Zhu Haihong, Liao Hailong. Research Status of Selective Laser Melting of High Strength Aluminum Alloy[J]. Laser & Optoelectronics Progress, 2018, 55(1): 11402
    Download Citation