• Laser & Optoelectronics Progress
  • Vol. 52, Issue 7, 70004 (2015)
Qi ying1、*, An Junming1、2, Wang Yue1, Zhang Jiashun1、2, and Wang Liangliang1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop52.070004 Cite this Article Set citation alerts
    Qi ying, An Junming, Wang Yue, Zhang Jiashun, Wang Liangliang. Principle and Progress of Silicon-Organic Hybrid Electro-Optic Modulators[J]. Laser & Optoelectronics Progress, 2015, 52(7): 70004 Copy Citation Text show less
    References

    [1] Masini G, Colace L, Assanto G. Si based optoelectronics for communications[J]. Materials Science and Engineering: B. 2002, 89(1-3): 2-9.

    [2] Zou Pin, Han Xiuyou, Wang Yu, et al.. Study on a tunable radio frequency filter based on integrated optical waveguide[J]. Acta Optica Sinica, 2013, 33(10): 1013001.

    [3] Liu Yi, Tong Xiaogang, Yu Jinlong, et al.. All-optical switching in silicon-on-insulator serially coupled double-ring resonator based on thermal nonlinear effect[J]. Chinese J Lasers, 2013, 40(2): 0205006.

    [4] Dong Zhengfang, Zhou Zhen, Wang Kunbo, et al.. Optimization and analysis for submicrometer-scale silicon waveguide optical phase modulator[J]. Laser & Optoelectronics Progress, 2012, 49(10): 102301.

    [5] Fan Liwen, Meng Zhou, Sun Qiao, et al.. Operating points control for Mach-Zehnder electro-optic modulator[J]. Chinese J Lasers, 2014, 41(9): 0905001.

    [6] Chen Qiaoshan, Yang Lin. Optical routers for photonic network-on-chip[J]. Laser & Optoelectronics Progress, 2014, 51(11): 110005.

    [7] Ren Yan, Song Muping. Optical NRZ-to-RZ modulation format conversion based on cross-phase modulation effects in silicon micro-ring resonator[J]. Acta Optica Sinica, 2013, 33(7): 0706002.

    [8] Liu Ansheng, Liao Ling, Rubin D, et al.. High-speed optical modulation based on carrier depletion in a silicon waveguide[J]. Opt Express, 2007, 15(2): 660-668.

    [9] Green W M, Rooks M J, Sekaric L, et al.. Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator[J]. Opt Express, 2007, 15(25): 17106-17113.

    [10] Liu Ansheng, Jones R, Liao Ling, et al.. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor[J]. Nature, 2004, 427(6975): 615-618.

    [11] Liao Ling, Liu Ansheng, Basak J, et al.. 40 Gbit/s silicon optical modulator for highspeed applications[J]. Electronics Letters, 2007, 43(22): 1196-1197.

    [12] Freude W, Brosi J, Koos C, et al.. Silicon-organic hybrid (SOH) devices for nonlinear optical signal processing[C]. Transparent Optical Networks, 2008. ICTON 2008. 10th Anniversary International Conference on IEEE, 2008, 2: 84-87.

    [13] Koos C, Vorreau P, Vallaitis T, et al.. All-optical high-speed signal processing with silicon-organic hybrid slot waveguides [J]. Nature Photonics, 2009, 3(4): 216-219.

    [14] Leuthold J, Freude W, Brosi J M, et al.. Silicon organic hybrid technology-a platform for practical nonlinear optics[J]. Proceedings of the IEEE, 2009, 97(7): 1304-1316.

    [15] Koos C, Alloatti L, Korn D, et al.. Silicon-organic hybrid (SOH) electro-optical devices advanced ohotonics[C]. Integrated Photonics Research, Silicon and Nanophotonics. Optical Society of America, 2011.

    [16] Alloatti L, Korn D, Pfeifle J, et al.. Silicon-organic hybrid devices[J]. SPIE, 2013, 8629: 86290P.

    [17] Koos C, Leuthold J, Freude W, et al.. Silicon-organic hybrid (SOH) technology: a platform for efficient electro-optical devices[C]. Optical MEMS and Nanophotonics (OMN), 2013 International Conference on IEEE, 2013: 85-86.

    [18] Leuthold J, Koos C, Freude W, et al.. Silicon-organic hybrid electro-optical devices[J]. Selected Topics in Quantum Electronics, IEEE Journal of, 2013, 19(6): 114-126.

    [19] Alloatti L, Palmer R, Diebold S, et al.. 100 GHz silicon-organic hybrid modulator[J]. Light-Science & Application, 2014, 3: e173.

    [20] Korn D, Palmer R, Yu Hui, et al.. Silicon-organic hybrid (SOH) IQ modulator using the linear electro-optic effect for transmitting 16QAM at 112 Gbit/s[J]. Opt Express, 2013, 21(11): 13219-13227.

    [21] Almeida V R, Xu Qianfan, Barrios C A, et al.. Guiding and confining light in void nanostructure[J]. Opt Lett, 2004, 29(11): 1209-1211.

    [22] Xu Qianfan, Almeida V R, Panepucci R R, et al.. Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material[J]. Opt Lett, 2004, 29(14): 1626-1628.

    [23] Rezzonico D, Kwon S J, Figi H, et al.. Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials[J]. The Journal of Chemical Physics, 2008, 128(12): 124713.

    [24] Figi H, Bale D H, Szep A, et al.. Electro-optic modulation in horizontally slotted silicon/organic crystal hybrid devices[J]. Journal of the Optical Society America B-Optical Physics, 2011, 28(9): 2291-2300.

    [25] Fujiwara M, Maruyama M, Sugisaki M, et al.. Determination of the d-Tensor Components of a single crystal of Nbenzyl-2-methyl-4-nitroaniline[J]. Japanese Journal of Applied Physics, 2007, 46(11): 1528.

    [26] Jazbinsek M, Figi H, Hunziker C, et al.. Organic electro-optic single crystalline films for integrated optics[C]. SPIE, 2010, 7774: 77740Q.

    [27] Elder D L, Benight S J, Song Jinsheng, et al.. Matrix-assisted poling of monolithic bridge-disubstituted organic NLO chromophores[J]. Chemistry of Materials, 2014, 26(2): 872-874.

    [28] Greenlee C, Guilmo A, Opadeyi A, et al.. Mach-Zehnder interferometry method for decoupling electro-optic and piezoelectric effects in poled polymer films[J]. Applied Physics Letters, 2010, 97(4): 041109.

    [29] Luo Jingdong, Zhou Xinghua, Jen A K Y. Rational molecular design and supramolecular assembly of highly efficient organic electro-optic materials[J]. Journal of Materials Chemistry. 2009, 19(40): 7410-7424.

    [30] Jin Din, Chen Hui, Barklund A, et al.. EO polymer modulators reliability study[J]. SPIE. 2010, 7599: 75990H.

    [31] Hunziker C, Kwon S J, Figi H, et al.. Fabrication and phase modulation in organic single-crystalline configurationally locked, phenolic polyene OH1 waveguides[J]. Opt Express, 2008, 16(20): 15903-15914.

    [32] Takahashi S, Bhola B, Yick A, et al.. Photo-stability measurement of electro-optic polymer waveguides with high intensity at 1550-nm wavelength[J]. Journal of Lightwave Technology, 2009, 27(5-8): 1045-1050.

    [33] Alloatti L, Korn D, Palmer R, et al.. 42.7 Gbit/s electro-optic modulator in silicon technology[J]. Opt Express, 2011, 19(12): 11841-11851.

    [34] Palmer R, Koeber S, Elder D L, et al.. High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material[J]. Journal of Lightwave Technology, 2014, 32(16): 2726-2734.

    [35] Xin Maoqing, Png C E, Lim S T, et al.. A high speed electro-optic phase shifter based on a polymer-infiltrated P-S-N diode capacitor[J]. Opt Express, 2011, 19(15): 14354-14369.

    [36] Brosi J M, Koos C, Andreani L C, et al.. High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide[J]. Opt Express, 2008, 16(6): 4177-4191.

    [37] Palmer R, Alloatti L, Korn D, et al.. Silicon-organic hybrid MZI modulator generating OOK, BPSK and 8-ASK signals for up to 84 Gbit/s[J]. Photonics Journal, IEEE, 2013, 5(2): 6600907.

    [38] Gould M, Baehr-Jones T, Ding R, et al.. Silicon-polymer hybrid slot waveguide ring-resonator modulator[J]. Opt Express, 2011, 19(5): 3952-3961.

    CLP Journals

    [1] [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Experimental System for Measuring Carrier Mobility Based on Photo-CELIVZhang PengGong Erdong[J]. Laser & Optoelectronics Progress, 2016, 53(10): 101407

    Qi ying, An Junming, Wang Yue, Zhang Jiashun, Wang Liangliang. Principle and Progress of Silicon-Organic Hybrid Electro-Optic Modulators[J]. Laser & Optoelectronics Progress, 2015, 52(7): 70004
    Download Citation