• Acta Optica Sinica
  • Vol. 36, Issue 11, 1117003 (2016)
Yu Zhenfang1、2、*, Qiu Qi1, Zhang Tianhang1, and Guo Yong1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201636.1117003 Cite this Article Set citation alerts
    Yu Zhenfang, Qiu Qi, Zhang Tianhang, Guo Yong. Dual-Modulation Multi-Wavelength Polarimetry for Monitoring Glucose Concentration in Anterior Chamber of Eye Phantoms[J]. Acta Optica Sinica, 2016, 36(11): 1117003 Copy Citation Text show less
    References

    [1] International Diabetes Federation. Diabetes Atlas (6th edition) [R/OL]. [2016-07-04]. http:∥www.idf.org/worlddiabetesday/toolkit/gp/facts-figures.

    [2] Davidson M B. Diabetes mellitus: diagnosis and treatment[M]. 3rd edition. New York: Churchill Livingstone, 1991: 231-232.

    [3] The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long term complications in insulin-dependent diabetes mellitus[J]. The New England Journal of Medicine, 1993, 329: 977-986.

    [4] Ewald N, Hardt P D. Diagnosis and treatment of diabetes mellitus in chronic pancreatitis[J]. World Journal of Gastroenterol, 2013, 19(42): 7276-7281.

    [5] American Diabetes Association. Clinical practice recommendations[J]. Diabetes Care, 1997, 20(1): S1-S70.

    [6] McNichols R J, Coté G L. Optical glucose sensing in biological fluids: an overview[J]. Journal of Biomedical Optics, 2000, 5(1): 5-16.

    [7] Khalil O S. Spectroscopic and clinical aspects of noninvasive glucose measurements[J]. Clinical Chemistry, 1999, 45(2): 165-177.

    [8] Wróbel M S. Non-invasive blood glucose monitoring with Raman spectroscopy: prospects for device miniaturization[J]. Materials Science and Engineering, 2015, 104: 012036.

    [9] Malin S F, Ruchti T L, Blank T B, et al. Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy[J]. Clinical Chemistry, 1999, 45(9): 1651-1658.

    [10] Wu Chunyang, Lu Qipeng, Ding Haiquan, et al. Noninvasive blood glucose sensing with near-infrared spectroscopy based on interstitial fluid[J]. Acta Optica Sinica, 2013, 33(11): 1117001.

    [11] Wickramasinghe Y, Yang Y, Spencer S A. Current problems and potential techniques in in-vivo glucose monitoring[J]. Journal of Fluorescence, 2004, 14(5): 513-520.

    [12] Zeng L M, Liu G D, Yang D W, et al. Design of a portable noninvasive photoacoustic glucose monitoring system integrated laser diode excitation with annular array detection[C]. SPIE, 2008, 7280: 72802F.

    [13] Su Y, Meng Z, Wang L Z, et al. Effect of temperature on noninvasive blood glucose monitoring in vivo using optical coherence tomography[J]. Chinese Optics Letters, 2014, 12(11): 111701.

    [14] Su Ya, Meng Zhuo, Wang Longzhi, et al. Correlation analysis and calibration of noninvasive blood glucose monitoring in vivo with optical coherence tomography[J]. Chinese J Lasers, 2014, 41(7): 0704002.

    [15] Zhu Yue, Gao Wanrong, Guo Yingcheng. A method of improving imaging quality of full-field optical coherence tomography[J]. Acta Optica Sinica, 2015, 35(5): 0517001.

    [16] Rabinovitch B, March W F, Adams R L. Noninvasive glucose monitoring of the aqueous humor of the eye: part I. Measurement of very small optical rotation[J]. Diabetes Care, 1982, 5(3): 254-258.

    [17] March W F, Rabinovitch B, Adams R L. Noninvasive glucose monitoring of the aqueous humor of the eye: part II. Animal studies and the scleral lens[J]. Diabetes Care, 1982, 5(3): 259-265.

    [18] Cameron B D, Coté G L. Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach[J]. IEEE Transactions on Biomedical Engineering, 1997, 44(12): 1221-1227.

    [19] Yu Zhenfang, Qiu Qi, Guo Yong. Dual modulation optical polarimetry for glucose monitoring[J]. Acta Optica Sinica, 2016, 36(1): 0117001.

    [20] Cameron B D. Noninvasive birefringence compensated sensing polarimeter: US7245952[P]. 2007-07-17.

    [21] March W, Engerman R, Rabinovitch, B. Optical monitor of glucose[J]. Transations - American Society for Artificial Internal Organs, 1979, 25: 28-31.

    [22] Coté G L, Fox M D, Northrop R B. Noninvasive optical polarimetric glucose sensing using a true phase measurement technique[J]. IEEE Transactions on Biomedical Engineering, 1992, 39(7): 752-756.

    [23] Malik B H, Coté G L. Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring[J]. Journal of Biomedical Optics, 2010, 15(1): 017002.

    [24] Malik B H, Pirnstill C W, Coté G L. Dual-wavelength polarimetric glucose sensing in the presence of birefringence and motion artifact using anterior chamber of the eye phantoms[J]. Journal of Biomedical Optics, 2013, 18(1): 017007.

    [25] Malik B H, Coté G L. Modeling the corneal birefringence of the eye toward the development of a polarimetric glucose sensor[J]. Journal of Biomedical Optics, 2010, 15(3): 037012.

    [26] Malik B H, Coté G L. Characterizing dual wavelength polarimetry through the eye for monitoring glucose[J]. Biomedical Optics Express, 2010, 1(5): 1247-1258.

    [27] Wan Q J, Coté G L, Dixon J B. Dual-wavelength polarimetry for monitoring glucose in the presence of varying birefringence[J]. Journal of Biomedical Optics, 2005, 10(2): 024029.

    [28] Pirnstill C W, Malik B H, Gresham V C, et al. In vivo glucose monitoring using dual-wavelength polarimetry to overcome corneal birefringence in the presence of motion[J]. Diabetes Technology & Therapeutics, 2012, 14(9): 819-827.

    [29] Yu Z F, Pirnstill C W, Coté G L. A closed-loop dual-modulation multi-spectral polarimeter for glucose monitoring[C]. SPIE, 2016, 9715: 97150U.

    [30] McMurry J. Organic Chemistry[M]. 3rd ed. Pacific Grove: Brooks/Cole Publishing Co., 1992: 284-325.

    [31] Knighton R W, Huang X R, Cavuoto L A. Corneal birefringence mapped by scanning laser polarimetry[J]. Optics Express, 2008, 16(18): 13738-13751.

    [32] Knighton R W. Spectral dependence of corneal birefringence at visible wavelengths[J]. Investigative Ophthalmology Visual Science, 2002, 43(13): 152.

    [33] Irsch K, Gramatikov B, Wu Y K, et al. Modeling and minimizing interference from corneal birefringence in retinal birefringence scanning for foveal fixation detection[J]. Biomedical Optics Express, 2011, 2(7): 1955-1968.

    [34] Donohue D J, Stoyanov B J, McCally R L, et al. Numerical modeling of the cornea’s lamellar structure and birefringence properties[J]. Journal of the Optical Society of America A, 1995, 12(7): 1425-1438.

    [35] van Blokland G J, Verhelst S C. Corneal polarization in the living human eye explained with a biaxial model[J]. Journal of the Optical Society of America A, 1987, 4(1): 82-90.

    [36] Winkler A M, Bonnema G T, Barton J K, Optical polarimetry for noninvasive glucose sensing enabled by Sagnac interferometry[J]. Applied Optics, 2011, 50(17): 2719-2731.

    Yu Zhenfang, Qiu Qi, Zhang Tianhang, Guo Yong. Dual-Modulation Multi-Wavelength Polarimetry for Monitoring Glucose Concentration in Anterior Chamber of Eye Phantoms[J]. Acta Optica Sinica, 2016, 36(11): 1117003
    Download Citation