• Journal of Innovative Optical Health Sciences
  • Vol. 13, Issue 5, 2041002 (2020)
Chuantao Gu1、2、*, Chunying Zheng1, Bing Liu2, Tingyu Feng3, Jiping Ma1, and Haofen Sun1
Author Affiliations
  • 1School of Environmental and Municipal Engineering Qingdao University of Technology Qingdao 266580, P. R. China
  • 2State Key Laboratory of Bio-Fibers and Eco-Textiles Qingdao University, Qingdao 266071, P. R. China
  • 3Qingdao Institute of Marine Resources for Nutrition Health Innovation Qingdao 266109, P. R. China
  • show less
    DOI: 10.1142/s1793545820410023 Cite this Article
    Chuantao Gu, Chunying Zheng, Bing Liu, Tingyu Feng, Jiping Ma, Haofen Sun. Synthesis of a dithieno[3,2-b:2',3'-d]silole-based conjugated polymer and characterization of its short wave near-infrared fluorescence properties[J]. Journal of Innovative Optical Health Sciences, 2020, 13(5): 2041002 Copy Citation Text show less
    References

    [1] F. Ding, Y. Zhan, X. Lu, Y. Sun, "Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging," Chem. Sci. 9, 4370–4380 (2018).

    [2] J. Wang, G. Li, K. Fu, X. Li, "Application of hydrogen for rare-earth gadolinium purification and thermodynamic simulation of system," J. Mater. Sci. 9, 13334–13343 (2019).

    [3] S. He, J. Song, J. Qu, Z. Cheng, "Crucial breakthrough of second near-infrared biological window fluorophores: Design and synthesis toward multimodal imaging and theranostics," Chem. Soc. Rev. 47, 4258–4278 (2018).

    [4] H.-Y. Liu, P.-J. Wu, S.-Y. Kuo, E.-H. Chang, C.-Y. Wu, Y.-H. Chan, "Quinoxaline-based polymer dots with ultrabright red to near-infrared fluorescence for in vivo biological imaging," J. Am. Chem. Soc. 137, 10420–10429 (2015).

    [5] W. Zhao, E. M. Carreira, "Conformationally restricted aza-bodipy: A highly fluorescent, stable, near-infrared-absorbing dye," Angew. Chem. Int. Ed. 44, 1677–1679 (2005).

    [6] J. Pauli, R. Brehm, M. Spieles, W. A. Kaiser, I. Hilger, U. Resch-Genger, "Novel fluorophores as building blocks for optical probes for in vivo near infrared fluorescence (NIRF) imaging," J. Fluoresc. 20, 681–693 (2010).

    [7] R. Tang, J. Xue, B. Xu, D. Shen, G. P. Sudlow, S. Achilefu, "Tunable ultrasmall visible-to-extended near-infrared emitting silver sulfide quantum dots for integrin-targeted cancer imaging," ACS Nano 9, 220–230 (2015).

    [8] K. Aita, T. Temma, Y. Shimizu, Y. Kuge, K. Seki, H. Saji, "Synthesis of a new NIR fluorescent Nd complex labeling agent," J. Fluoresc. 20, 225–234 (2010).

    [9] X. Ding, C. H. Liow, M. Zhang, R. Huang, C. Li, H. Shen, M. Liu, Y. Zou, N. Gao, Z. Zhang, Y. Li, Q. Wang, S. Li, J. Jiang, "Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window," J. Am. Chem. Soc. 136, 15684–15693 (2014).

    [10] A. L. Antaris, H. Chen, K. Cheng, Y. Sun, G. Hong, C. Qu, S. Diao, Z. Deng, X. Hu, B. Zhang, X. Zhang, O. K. Yaghi, Z. R. Alamparambil, X. Hong, Z. Chen, H. Dai, "A small- molecule dye for NIR-II imaging," Nat. Mater. 15, 235–242 (2016).

    [11] Y. Miao, C. Gu, Y. Zhu, B. Yu, Y. Shen, H. Cong, "Recent progress in fluorescence imaging of the near-infrared II window," ChemBioChem 19, 2522–2541 (2018).

    [12] Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, Q. Wang, "Ag2S quantum dot: A bright and biocompatible fluorescent nanoprobe in the second near-infrared window," ACS Nano 6, 3695–3702 (2012).

    [13] Y. Zhang, Y. Zhang, G. Hong, W. He, K. Zhou, K. Yang, F. Li, G. Chen, Z. Liu, H. Dai, Q. Wang, "Biodistribution, pharmacokinetics and toxicology of Ag2S near-infrared quantum dots in mice," Biomaterials 34, 3639–3646 (2013).

    [14] C. Li, Y. Zhang, M. Wang, Y. Zhang, G. Chen, L. Li, D. Wu, Q. Wang, "In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window," Biomaterials 35, 393–400 (2014).

    [15] Y. Du, B. Xu, T. Fu, M. Cai, F. Li, Y. Zhang, Q. Wang, "Near-infrared photoluminescent Ag2S quantum dots from a single source precursor," J. Am. Chem. Soc. 132, 1470–1471 (2010).

    [16] G. Hong, J. T. Robinson, Y. Zhang, S. Diao, A. L. Antaris, Q. Wang, H. Dai, "In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region," Angew. Chem. Int. Ed. 51, 9818–9821 (2012).

    [17] C. Li, Q. Wang, "Challenges and opportunities for intravital near-infrared fluorescence imaging technology in the second transparency window," ACS Nano 12, 9654–9659 (2018).

    [18] Q. Wen, Y. Zhang, C. Li, S. Ling, X. Yang, G. Chen, Y. Yang, Q. Wang, "NIR-II fluorescent selfassembled peptide nanochain for ultrasensitive detection of peritoneal metastasis," Angew. Chem. Int. Ed. 58, 11001–11006 (2019).

    [19] G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie, N. F. Huang, J. P. Cooke, H. Dai, "Multifunctional in vivo vascular imaging using near-infrared II fluorescence," Nat. Med. 18, 1841–1846 (2012).

    [20] C. Li, F. Li, Y. Zhang, W. Zhang, X. Zhang, Q. Wang, "Real-time monitoring surface chemistrydependent in vivo behaviors of protein nanocages via encapsulating an NIR-II Ag2S duantum dot," ACS Nano 9, 12255–12263 (2015).

    [21] Q. Zhang, Q. Guo, Q. Chen, X. Zhao, S. J. Pennycook, H. Chen, Highly efficient 2D NIR-II photothermal agent with Fenton catalytic activity for cancer synergistic photothermal–chemodynamic therapy," Adv. Sci. 7, 1902576 (2020)

    [22] S. Zhao, X. Song, X. Bu, C. Zhu, G. Wang, F. Liao, S. Yang, M. Wang, "Polydopamine dots as an ultrasensitive fluorescent probe switch for Cr(VI) in vitro," J. Appl. Polym. Sci. 134, 44784 (2017).

    [23] Y. Wang, W. Shi, S. Wang, C. Li, M. Qian, J. Chen, R. Huang, "Facile incorporation of dispersed fluorescent carbon nanodots into mesoporous silica nanosphere for pH-triggered drug delivery and imaging," Carbon 108, 146–153 (2016).

    [24] D. J. Naczynski, M. C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. M. Roth, R. E. Riman, P. V. Moghe, "Rare-earth-doped biological composites as in vivo shortwave infrared reporters," Nat. Commun. 4, 2199 (2013).

    [25] B. Yang, H. Chen, Z. Zheng, G. Li, "Application of upconversion rare earth fluorescent nanoparticles in biomedical drug delivery system," J. Lumin. 223, 117226 (2020).

    [26] C. Gu, D. Liu, J. Wang, Q. Niu, C. Gu, B. Shahid, B. Yu, H. Cong, R. Yang, "Alkylthienyl substituted asymmetric 2D BDT and DTBT-based polymer solar cells with a power conversion efficiency of 9.2%," J. Mater. Chem. A 6, 2371–2378 (2018).

    [27] Z. Tao, G. Hong, C. Shinji, C. Chen, S. Diao, A. L. Antaris, B. Zhang, Y. Zou, H. Dai, "Biological imaging using nanoparticles of small organic molecules with fluorescence emission at wavelengths longer than 1000 nm," Angew. Chem. Int. Ed. 52, 13002– 13006 (2013).

    [28] X.-D. Zhang, H. Wang, A. L. Antaris, L. Li, S. Diao, R. Ma, A. Nguyen, G. Hong, Z. Ma, J. Wang, S. Zhu, J. M. Castellano, T. Wyss-Coray, Y. Liang, J. Luo, H. Dai, "Traumatic brain injury imaging in the second near-infrared window with a molecular fluorophore," Adv. Mater. 28, 6872–6879 (2016).

    [29] A. Godard, G. Kalot, J. Pliquett, B. Busser, X. L. Guevel, K. D. Wegner, U. Resch-Genger, Y. Rousselin, J.-L. Coll, F. Denat, E. Bodio, C. Goze, L. Sance, "Water-soluble aza-BODIPYs: Biocompatible organic dyes for high contrast in vivo NIR-II imaging," Bioconjugate Chem. 31, 1088–1092 (2020).

    [30] Z. Zhu, W. Liu, L. Cheng, Z. Li, Z. Xi, L. Yi, "New NBD-based fluorescent probes for biological thiols," Tetrahedron Lett. 56, 3909–3912 (2015).

    [31] S. Li, C. Yin, R. Wang, Q. Fan, W. Wu, X. Jiang, "NIR-II AIE fluorophores with phenothiazine derivatives as the donor and 6,7-diphenyl-[1,2,5]thiadiazolo[ 3,4-g]quinoxaline as the acceptor for in vivo imaging," ACS Appl. Mater. Interfaces DOI: 10.1021/acsami.0c03769 (2020).

    [32] G. Hong, Y. Zou, A. L. Antaris, S. Diao, D. Wu, K. Cheng, X. Zhang, C. Chen, B. Liu, Y. He, J. Z. Wu, J. Yuan, B. Zhang, Z. Tao, C. Fukunaga, H. Dai, "Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second nearinfrared window," Nat. Commun. 5, 4206 (2014).

    [33] Y. Zhu, C. Gu, Y. Miao, B. Yu, Y. Shen, H. Cong, "D-A polymers for fluorescence/photoacoustic imaging and characterization of their photothermal properties," J. Mater. Chem. B 7, 6576–6584 (2019).

    [34] Y. Miao, C. Gu, B. Yu, Y. Zhu, W. Zou, Y. Shen, H. Cong, "Conjugated-polymer-based nanoparticles with efficient NIR-II fluorescent, photoacoustic and photothermal performance," ChemBioChem 20, 2793–2799 (2019).

    [35] N. Wang, Z. Chen, W. Wei, Z. Jiang, "Fluorinated benzothiadiazole-based conjugated polymers for high performance polymer solar cells without any processing additives or post-treatments," J. Am. Chem. Soc. 135, 17060–17068 (2013).

    [36] H. Zhou, L. Yang, A. C. Stuart, S. C. Price, S. Liu, W. You, "Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency," Angew. Chem. Int. Ed. 50, 2995–2998 (2011).

    [37] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, ?. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT, 2009.

    [38] T. L. Nguyen, H. Choi, S.-J. Ko, M. A. Uddin, B. Walker, S. Yum, J.-E. Jeong, M. H. Yun, T. J. Shin, S. Hwang, J. Y. Kim, H. Y. Woo, Semi-crystalline photovoltaic polymers with efficiency exceeding 9% in a 300 nm thick conventional single-cell device," Energy Environ. Sci. 7, 3040–3051 (2014).

    [39] C. Gu, M. Xiao, X. Bao, L. Han, D. Zhu, N. Wang, S. Wen, W. Zhu, R. Yang, "Design, synthesis and photovoltaic properties of two -bridged cyclopentadithiophene-based polymers," Polym. Chem. 5, 6551–6557 (2014).

    [40] J. E. Murphy, M. C. Beard, A. G. Norman, S. P. Ahrenkiel, J. C. Johnson, P. Yu, O. I. Micic, R. J. Ellingson and A. J. Nozik, "PbTe colloidal nanocrystals: Synthesis, characterization, and multiple exciton generation," J. Am. Chem. Soc. 128, 3241– 3247 (2006).

    [41] S. J. Klaine, P. J. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy, "Nanomaterials in the environment: Behavior, fate, bioavailability, and effects," Environmental Toxicology & Chemistry 27, 1825–1851 (2008).

    [42] Y. Li,W. Lu, Q. Huang, C. Li andW. Chen, "Copper sulfide nanoparticles for photothermal ablation of tumor cells," Nanomedicine 5, 1161–1171 (2010).

    [43] B. Guo, Z. Sheng, D. Hu, C. Liu, H. Zheng, B. Liu, "Through scalp and skull NIR-II photothermal therapy of deep orthotopic brain tumors with precise photoacoustic imaging guidance," Adv. Mater. 30, 1802591 (2018).

    [44] M. Qiu, D. Wang, W. Liang, L. Liu, Y. Zhang, X. Chen, D. K. Sang, C. Xing, Z. Li, B. Dong, F. Xing, D. Fan, S. Bao, H. Zhang, Y. Cao, "Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy," Proc Natl Acad Sci USA 115, 501–506 (2018).

    [45] B. Guo, Z. Sheng,D.Hu, A. Li, S.Xu, P. N. Manghnani, C. Liu, L. Guo, H. Zheng, B. Liu, "Molecular engineering of conjugated polymers for biocompatible organic nanoparticles with highly efficient photoacoustic and photothermal performance in cancer theranostics," ACS Nano 11, 10124–10134 (2017).

    Chuantao Gu, Chunying Zheng, Bing Liu, Tingyu Feng, Jiping Ma, Haofen Sun. Synthesis of a dithieno[3,2-b:2',3'-d]silole-based conjugated polymer and characterization of its short wave near-infrared fluorescence properties[J]. Journal of Innovative Optical Health Sciences, 2020, 13(5): 2041002
    Download Citation