• Chinese Journal of Quantum Electronics
  • Vol. 36, Issue 4, 434 (2019)
LUSibin 1、2、3、*, Honghui CHEN1、2、3, Zexi LU1、2、3, Zhanwei YAO1、2, LIRunbing 1、2, Jin WANG1、2, and Mingsheng ZHAN1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2019.04.008 Cite this Article
    LUSibin, CHEN Honghui, LU Zexi, YAO Zhanwei, LIRunbing, WANG Jin, ZHAN Mingsheng. Experimental investigation of improving robustness of atom interferometer by stimulated Raman shortcut-to-adiabatic passage[J]. Chinese Journal of Quantum Electronics, 2019, 36(4): 434 Copy Citation Text show less
    References

    [1] Wang J. Precision measurement with atom interferometry [J]. Chinese Physics B , 2015, 24(5): 93-102.

    [2] Wang J, Zhou L, Li R B, et al . Cold atom interferometers and their applications in precision measurements [J]. Frontier of Physics in China , 2009, 4(2): 179-189.

    [4] Peters A, Chung K Y, Chu S. Measurement of gravitational acceleration by dropping atoms [J]. Nature , 1999, 400(6747): 849-852.

    [5] Zhou L, Long S T, Tang B, et al . Test of equivalence principle at 108 level by a dual-species double-diffraction Raman atom interferometer [J]. Physical Review Letters , 2015, 115(1): 013004.

    [6] Duan X C, Deng X B, et al . Test of the universality of free fall with atoms in different spin orientations [J]. Physical Review Letters , 2016, 117(2): 023001.

    [7] Rosi G, D’Amico G, Cacciapuoti L, et al . Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states [J]. Nature Communications , 2017, 8: 15529.

    [8] Geiger R, Trupke M. Proposal for a quantum test of the weak equivalence principle with entangled atomic species [J]. Physical Review Letters , 2018, 120(4): 043602.

    [9] Parker R H, Yu C H, Zhong W C, et al . Measurement of the fine structure constant as a test of the standard model [J]. Science , 2018, 360(6385): 191-195.

    [10] Ekstrom C R, Schmiedmayer J, Chapman M S, et al . Measurement of the electric polarizability of sodium with an atom interferometer [J]. Physical Review A , 1995, 51(5): 3883-3888.

    [11] Hofferberth S, Lesanovsky I, Schumm T, et al . Probing quantum and thermal noise in an interacting many-body system [J]. Nature Physics , 2008, 4(6): 489-495.

    [12] Zhou L, Xiong Z Y, Yang W, et al . Measurement of local gravity via a cold atom interferometer [J]. Chinese Physics Letters , 2011, 28(1): 013701.

    [13] Hu Z K, Sun B L, Duan X C, et al . Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter [J]. Physical Review A , 2013, 88(4): 043610.

    [14] Mcguirk J M, Foster G T, Fixler J B, et al . Sensitive absolute-gravity gradiometry using atom interferometry [J]. Physical Review A , 2002, 65(3): 033608.

    [15] Sorrentino F, Bodart Q, Cacciapuoti L, et al . Sensitivity limits of a Raman atom interferometer as a gravity gradiometer [J]. Physical Review A , 2014, 89(2): 023607.

    [16] Gustavson T L, Landragin A, Kasevich M A. Rotation sensing with a dual atom interferometer Sagnac gyroscope [J]. Classical Quantum Gravity , 2000, 17(12): 2385-2398.

    [17] Dutta I, Savoie D, Fang B, et al . Continuous cold-atom inertial sensor with 1 nrad/sec rotation stability [J]. Physical Review Letters , 2016, 11(18): 183003.

    [18] Yao Z W, Lu S B, Li R B, et al . Calibration of atomic trajectories in a large-area dual-atom-interferometer gyroscope [J]. Physical Review A , 2018, 97(1): 013620.

    [19] Yao Z W, Lu S B, Li R B, et al . Continuous dynamic rotation measurements using a compact cold atom gyroscope [J]. Chinese Physics Letters , 2016, 33(8): 083701.

    [20] Durfee D S, Shaham Y K, Kasevich M A. Long-term stability of an area-reversible atom-interferometer Sagnac gyroscope [J]. Physical Review Letters , 2006, 97(24): 240801.

    [21] Lu S B, Yao Z W, Li R B, et al . Competition effects of multiple quantum paths in an atom interferometer [J]. Optics Communications , 2018, 429(15): 158-162.

    [22] Weitz M, Young B C, Chu S. Atomic interferometer based on adiabatic population transfer [J]. Physical Review Letters , 1994, 73(19): 2563-2566.

    [23] Kotru K, Brown J M, Butts D L, et al . Robust Ramsey sequences with Raman adiabatic rapid passage [J]. Physical Review A , 2014, 90(5): 053611.

    [24] Kotru K, Butts D L, Kinast J M, et al . Large-area atom interferometry with frequency-swept Raman adiabatic passage [J]. Physical Review Letters , 2015, 115(10): 103001.

    [25] Jaffe M, Xu V, Haslinger P, et al . Efficient adiabatic spin-dependent kicks in an atom interferometer [J]. Physical Review Letters , 2018, 121(4): 040402.

    [26] Du Y X, Liang Z T, Li Y C, et al . Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms [J]. Nature Communications , 2016, 7: 12479.

    [27] Weitz M, Young B C, Chu S. Atom manipulation based on delayed laser pulses in three-and four-level systems: Light shifts and transfer efficiencies [J]. Physical Review A , 1994, 50(3): 2438-2444.

    LUSibin, CHEN Honghui, LU Zexi, YAO Zhanwei, LIRunbing, WANG Jin, ZHAN Mingsheng. Experimental investigation of improving robustness of atom interferometer by stimulated Raman shortcut-to-adiabatic passage[J]. Chinese Journal of Quantum Electronics, 2019, 36(4): 434
    Download Citation