• Matter and Radiation at Extremes
  • Vol. 4, Issue 2, 27402 (2019)
R. B. Spielman* and D. B. Reisman
Author Affiliations
  • Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA
  • show less
    DOI: 10.1063/1.5089765 Cite this Article
    R. B. Spielman, D. B. Reisman. On the design of magnetically insulated transmission lines for z-pinch loads[J]. Matter and Radiation at Extremes, 2019, 4(2): 27402 Copy Citation Text show less
    References

    [1] W. L. Baker, F. Long, T. H. Martin, J. W. Poukey, D. B. Seidel, R. B. Spielman, G. Cooperstein et al. PBFA II-Z: A 20-MA driver for Z-pinch experiments, 396(1995).

    [2] S. F. Breeze, C. Deeney, M. R. Douglas, K. Jungwirth, F. Long, R. B. Spielman, J. Ullschmied et al. PBFA Z: A 20-MA Z-pinch driver for plasma radiation sources, 150(1996).

    [3] G. A. Chandler, C. Deeney, M. R. Douglas, D. L. Fehl, R. B. Spielman et al. Z: A precision 200-TW, 2-MJ Z-pinch x-ray source. Bull. Am. Phys. Soc., 42, 1947(1997).

    [4] M. Comyn, J. F. Seamen, R. B. Spielman, K. W. Struve, W. A. Stygar, M. K. Craddock, M. Reiser, J. J. Thomson. PBFA Z: A 55 TW/4.5 MJ electrical generator, 1235(1997).

    [5] B. H. Bernstein, D. D. Bloomquist, J. R. Lee, D. H. McDaniel, A. W. Sharpe, R. W. Stinnett, P. J. Turchi et al. Saturn, a large area x-ray simulation accelerator, 310(1987).

    [6] R. J. Dukart, B. A. Hammel, D. L. Hanson, W. W. Hsing, R. B. Spielman et al. Z-pinch experiments on Saturn at 30 TW. AIP Conf. Proc., 195, 3(1989).

    [7] R. S. Coats, M. L. Kiefer, T. D. Pointon, J. P. Quintenz, D. B. Seidel et al. The 3-D, electromagnetic, particle-in-cell code, QUICKSILVER. Int. J. Mod. Phys. C, 02, 475(1991).

    [8] H. C. Ives, T. D. Pointon, R. B. Spielman, K. W. Struve, W. A. Stygar. Particle-in-cell simulations of electron flow in the post-hole convolute of the Z accelerator. Phys. Plasmas, 8, 4534(2001).

    [9] T. D. Pointon, M. E. Savage. 2-D PIC simulations of electron flow in the magnetically insulated transmission lines of Z and ZR, 151(2005).

    [10] W. L. Langston, T. D. Pointon, M. E. Savage. Computer simulations of the magnetically insulated transmission lines and post-hole convolute of ZR, 165(2007).

    [11] J. M. Creedon. Relativistic Brillouin flow in the high ν/γ diode. J. Appl. Phys., 46, 2946(1975).

    [12] J. M. Creedon. Magnetic cutoff in high‐current diodes. J. Appl. Phys., 48, 1070(1977).

    [13] C. W. Mendel. Planar one-dimensional magnetically insulated electron flow for arbitrary canonical-momentum distribution. J. Appl. Phys., 50, 3830(1979).

    [14] A. H. Guenther, G. W. Kuswa, C. W. Mendel, J. P. VanDevender, M. Kristiansen. Determination of line voltage in self-magnetically insulated flows, 153(1979).

    [15] A. H. Guenther, J. P. VanDevender, M. Kristiansen. Self-magnetically insulated power flow, 55(1979).

    [16] J. P. VanDevender. Long self-magnetically insulated power transport experiments. J. Appl. Phys., 50, 3928(1979).

    [17] J. T. Crow, B. G. Epstein, D. H. McDaniel, C. W. Mendel, J. P. VanDevender et al. Self-magnetically insulated electron flow in vacuum transmission lines. Physica B+C, 104, 167(1981).

    [18] C. W. Mendel, S. E. Rosenthal, D. B. Seidel. A simple theory of magnetic insulation from basic physical considerations. Laser Part. Beams, 1, 311(1983).

    [19] C. W. Mendel, D. B. Seidel, S. A. Slutz. A general theory of magnetically insulated electron flow. Phys. Fluids, 26, 1563(E)(1984).

    [20] M. S. Di Capua. Magnetic insulation. IEEE Trans. Plasma Sci., 11, 205(1983).

    [21] C. W. Mendel, P. A. Miller. Analytic model of applied-B ion diode impedance behavior. J. Appl. Phys., 61, 529(1987).

    [22] S. E. Rosenthal. Characterization of electron flow in negative- and positive-polarity linear-induction accelerators. IEEE Trans. Plasma Sci., 19, 822(1991).

    [23] C. W. Mendel, S. E. Rosenthal, D. B. Seidel. Low-pressure relativistic electron flow. Phys. Rev. A, 45, 5854(1992).

    [24] T. W. Grasser, C. W. Mendel, M. E. Savage, W. W. Simpson, D. M. Zagar et al. Experiments on a current-toggled plasma-opening switch. J. Appl. Phys., 71, 3731(1992).

    [25] , C. W. Mendel. Status of magnetically-insulated power transmission theory(1995).

    [26] C. W. Mendel, S. E. Rosenthal. Modeling magnetically insulated devices using flow impedance. Phys. Plasma, 2, 1332(1995).

    [27] C. W. Mendel, S. E. Rosenthal. Dynamic modeling of magnetically insulated transmission line systems. Phys. Plasma, 3, 4207(1996).

    [28] C. W. Mendel, D. B. Seidel. Flow impedance in a uniform magnetically insulated transmission line. Phys. Plasma, 6, 4791(1999).

    [29] P. F. Ottinger, J. W. Schumer. Rescaling of equilibrium magnetically insulated flow theory based on results from particle-in-cell simulations. Phys. Plasma, 13, 063109(2006).

    [30] P. A. Corcoran, M. E. Cuneo, H. C. Ives, W. A. Stygar, T. C. Wagoner et al. Analytic model of a magnetically insulated transmission line with collisional flow electrons. Phys. Rev. Spec. Top.--Accel. Beams, 9, 090401(2006).

    [31] R. J. Allen, D. D. Hinshelwood, P. F. Ottinger, J. W. Schumer. Generalized model for magnetically insulated transmission line flow. IEEE Trans. Plasma Sci., 36, 2708(2008).

    [32] R. J. Allen, R. D. Curry, D. D. Hinshelwood, P. F. Ottinger, J. W. Schumer. Benchingmark and implementation of a generalized MITL flow model, 1176(2009).

    [33] M. L. Kiefer, P. J. Turchi, M. M. Widner, M. F. Rose. SCREAMER—A single-line pulsed-power design tool, 685(1985).

    [34] Y. Gryazin, R. B. Spielman. SCREAMER v4.0—A powerful circuit analysis code(2015).

    [35] P. A. Corcoran, J. W. Douglas, H. C. Ives, R. B. Spielman, W. A. Stygar et al. 55-TW magnetically insulated transmission-line system: Design, simulations, and performance. Phys. Rev. Spec. Top.--Accel. Beams, 12, 120401(2009).

    [36] D. Jackson, J. Martin, C. Mendel, T. Pointon, M. Savage et al. Precision electron flow measurements in a disk transmission line(2008).

    [37] C. Jennings, T. D. Pointon, D. B. Seidel, K. W. Struve, J. P. VanDevender et al. Requirements for self-magnetically insulated transmission lines. Phys. Rev. Spec. Top.--Accel. Beams, 18, 030401(2015).

    [38] G. Brent, E. M. Campbell, D. H. Froula, D. B. Reisman, R. B. Spielman et al. Conceptual design of a 15-TW pulsed-power accelerator for high-energy-density–physics experiments. Matter Radiat. Extremes, 2, 204(2017).

    [39] J. A. Halbleib, R. C. Pate, J. W. Poukey, A. L. Pregenzer, T. W. L. Sanford et al. Measurement of electron energy deposition necessary to form an anode plasma in Ta, Ti, and C for coaxial Bremsstrahlung diodes. J. Appl. Phys., 66, 10(1989).

    [40] B. C. Franke, R. P. Kensek, T. W. Laub. ITS version 5.0: The integrated TIGER series of coupled electron/photon Monte Carlo transport codes with CAD geometry(2005).

    R. B. Spielman, D. B. Reisman. On the design of magnetically insulated transmission lines for z-pinch loads[J]. Matter and Radiation at Extremes, 2019, 4(2): 27402
    Download Citation