• Opto-Electronic Engineering
  • Vol. 48, Issue 2, 200160 (2021)
Chen Hao1、2、*, Wei Ling1、2, Li Ende1、2, He Yi3、4, Yang Jinsheng1, Li Xiqi1、2, Fan Xinlong1, Yang Zeping1, and Zhang Yudong1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.12086/oee.2021.200160 Cite this Article
    Chen Hao, Wei Ling, Li Ende, He Yi, Yang Jinsheng, Li Xiqi, Fan Xinlong, Yang Zeping, Zhang Yudong. A B-spline based fast wavefront reconstruction algorithm[J]. Opto-Electronic Engineering, 2021, 48(2): 200160 Copy Citation Text show less
    References

    [1] Furukawa Y, Takaie Y, Maeda Y, et al. Development of one-shot aspheric measurement system with a Shack-Hartmann sensor[J]. Appl Opt, 2016, 55(29): 8138–8144.

    [2] Wu Y, He J C, Zhou X T, et al. A limitation of Hartmann-Shack system in measuring wavefront aberrations for patients received laser refractive surgery[J]. PLoS One, 2015, 10(2): e0117256.

    [5] Wei L, Shi G H, Lu J, et al. Centroid offset estimation in the Fourier domain for a highly sensitive Shack–Hartmann wavefront sensor[J]. J Opt, 2013, 15(5): 055702.

    [6] Fried D L. Least-square fitting a wave-front distortion estimate to an array of phase-difference measurements[J]. J Opt Soc Am, 1977, 67(3): 370–375.

    [7] Southwell W H. Wave-front estimation from wave-front slope measurements[J]. J Opt Soc Am, 1980, 70(8): 998–1006.

    [8] Dai F Z, Tang F, Wang X Z, et al. Modal wavefront re-construction based on Zernike polynomials for lateral shearing interferometry: comparisons of existing algorithms[J]. Appl Opt, 2012, 51(21): 5028–5037.

    [9] Lee H. Use of Zernike polynomials for efficient estimation of orthonormal aberration coefficients over variable noncircular pupils[J]. Opt Lett, 2010, 35(13): 2173–2175.

    [10] Nam J, Thibos L N, Iskander D R. Zernike radial slope polynomials for wavefront reconstruction and refraction[J]. J Opt Soc Am A, 2009, 26(4): 1035–1048.

    [12] Darudi A, Bakhshi H, Asgari R. Image restoration using aberration taken by a Hartmann wavefront sensor on extended object, towards real-time deconvolution[J]. Proc SPIE, 2015, 9530: 95300Q.

    [13] Seifert L, Tiziani H J, Osten W. Wavefront reconstruction with the adaptive Shack–Hartmann sensor[J]. Opt Commun, 2005, 245(1–6): 255–269.

    [14] Ares M, Royo S. Comparison of cubic B-spline and Zernike-fitting techniques in complex wavefront reconstruction[J]. Appl Opt, 2006, 45(27): 6954–6964.

    [15] de Visser C C, Verhaegen M. Wavefront reconstruction in adaptive optics systems using nonlinear multivariate splines[J]. J Opt Soc Am A, 2013, 30(1): 82–95.

    [16] Huang L, Xue J P, Gao B, et al. Spline based least squares integration for two-dimensional shape or wavefront reconstruction[J]. Opt Lasers Eng, 2017, 91: 221–226.

    [17] Pant K K, Burada D R, Bichra M, et al. Weighted spline based integration for reconstruction of freeform wavefront[J]. Appl Opt, 2018, 57(5): 1100–1109.

    [18] Knott G D. Interpolating Cubic Splines[M]. Boston: Birkh?user, 2000.

    [20] Yang J S, Wei L, Chen H L, et al. Absolute calibration of Hartmann-Shack wavefront sensor by spherical wavefronts[J]. Opt Commun, 2010, 283(6): 910–916.

    [21] Xie D X. A new block parallel SOR method and its analysis[J]. SIAM J Sci Comput, 2006, 27(5): 1513–1533.

    [22] Chamot S R, Dainty C, Esposito S. Adaptive optics for ophthalmic applications using a pyramid wavefront sensor[J]. Opt Express, 2006, 14(2): 518–526.

    [23] Chanteloup J C F, Cohen M. Compact high resolution four wave lateral shearing interferometer[J]. Proc SPIE, 2004, 5252: 282–292.

    Chen Hao, Wei Ling, Li Ende, He Yi, Yang Jinsheng, Li Xiqi, Fan Xinlong, Yang Zeping, Zhang Yudong. A B-spline based fast wavefront reconstruction algorithm[J]. Opto-Electronic Engineering, 2021, 48(2): 200160
    Download Citation