• Journal of Innovative Optical Health Sciences
  • Vol. 11, Issue 6, 1850033 (2018)
Jiyong Cho1、*, Bibin Prasad2, and Jung Kyung3
Author Affiliations
  • 1Department of Mechanical Engineering, Graduate School, Kookmin University, Seoul 02707, Republic of Korea
  • 2Department of Radiation Oncology, SMG-Seoul National University Boramae Medical Center, Seoul 07061, Republic of Korea
  • 3School of Mechanical Engineering and Department of Integrative Biomedical Science and Engineering, Graduate School, Kookmin University, Seoul 02707, Republic of Korea
  • show less
    DOI: 10.1142/s1793545818500335 Cite this Article
    Jiyong Cho, Bibin Prasad, Jung Kyung. Near-infrared laser irradiation of a multilayer agar-gel tissue phantom to induce thermal effect of traditional moxibustion[J]. Journal of Innovative Optical Health Sciences, 2018, 11(6): 1850033 Copy Citation Text show less
    References

    [1] J. R. Peterson, “Acupuncture in the 1990s,” Arch. Fam. Med. 5, 237–240 (1996).

    [2] J. Y. Cha, H. S. Myoung, S. P. Cho, K. J. Lee, “Development of deep-heating stimulation system for substituting the heat effect of moxibustion,” J. Inst. Electron. Eng. Korea 46, 50–57 (2009). Google Scholar

    [3] D. E. Yoon, B. K. Jo, “A study on the variations of the body trunk temperature by the drug-pad moxibustion method,” Trans. Kor. Inst. Elec. Engr. 55, 386–396 (2006). Google Scholar

    [4] H. Deng, X. Shen, “The Mechanism of Moxibustion: Ancient Theory and Modern Research,” Evid.-Based Complementary Altern. Med. 2013, 379291 (2013).

    [5] H. Li and S. Liu, “2 Cases of moxibustion allergy,” J. Tradit. Chin. Med. 17, 859–860 (2008). Google Scholar

    [6] A. Chiba, H. Nakanishi, S. Chichibu, “Thermal and antiradical properties of indirect moxibustion,” Am. J. Chin. Med. 25, 281–287 (1997). Link, ISI, Google Scholar

    [7] F. Wu, R. Zhang, X. Shen, L. Lao, “Preliminary Study on Pain Reduction of Monosodium Iodoacetate-Induced Knee Osteoarthritis in Rats by Carbon Dioxide Laser Moxibustion,” Evid.-Based Complementary Altern. Med. 2014, 754304 (2014).

    [8] H. Mao, J. J. Mao, M. Guo, K. Cheng, J. Wei, X. Shen, X. Shen, “Effects of Infrared Laser Moxibustion on Cancer-Related Fatigue: A Randomized, Double-Blind, Placebo-Controlled Trial,” Cancer 122, 3667–3672 (2016).

    [9] B. Jung, C. S. Kim, B. Choi, J. S. Nelson, “Hand-held pulsed photothermal radiometry system to estimate epidermal temperature rise during laser therapy,” Skin Res. Technol. 12, 292–297 (2006).

    [10] S. C. Gnyawali, Y. Chen, F. Wu, K. E. Bartels, J. P. Wicksted, H. Liu, C. K. Sen, W. R. Chen, “Temperature measurement on tissue surface during laser irradiation,” Med. Biol. Eng. Comput. 46, 159–168 (2008).

    [11] Y. Nawata, K. Kaneko, “Measurement of temperature distribution in phantom body by an ultrasonic CT method,” Proc. 5th ASME/JSME Joint Thermal Eng. Conf. (1999). Google Scholar

    [12] M. Mital, E. P. Scott, “Thermal detection of embedded tumors using infrared imaging,” J. Biomech. Eng. 129, 33–39 (2007). Crossref, ISI, Google Scholar

    [13] A. D. Reid, M. R. Gertner, M. D. Sherar, “Temperature measurement artefacts of thermocouples and fluoroptic probes during laser irradiation at 810 nm,” Phys. Med. Biol. 46, N149–N157 (2001).

    [14] M. T. Hossain, B. Prasad, K. S. Park, H. J. Lee, Y. H. Ha, S. K. Lee, J. K. Kim, “Simulation and experimental evaluation of selective heating characteristics of 13.56 MHz radiofrequency hyperthermia in phantom models,” Int. J. Precis. Eng. Manuf. 17, 253–256 (2016).

    [15] B. Prasad, Y. H. Ha, S. K. Lee, J. K. Kim, “Patient-specific simulation for selective liver tumor treatment with noninvasive radiofrequency hyperthermia,” J. Mech. Sci. Technol. 30, 5837–5845 (2016).

    [16] B. Prasad, S. Kim, W. Cho, S. Kim, J. K. Kim, “Effect of tumor properties on energy absorption, temperature mapping, and thermal dose in 13.56-MHz radiofrequency hyperthermia,” J. of Therm. Biol. 74, 281–289 (2018).

    [17] J. Cho, H. Byun, S. D. Lee, J. K. Kim, “Temperature distribution in deep tissue phantom during laser irradiation at 1,064 nm measured by thermocouples and thermal imaging technique,” J. Vis. 14, 265–272 (2011). Crossref, ISI, Google Scholar

    [18] V. G. Liu, T. M. Cowan, S. W. Jeong, S. L. Jacques, E. C. Lemley, W. R. Chen, “Selective photothermal interaction using an 805-nm diode laser and indocyanine green in gel phantom and chicken breast tissue,” Lasers Med. Sci. 17, 272–279 (2002).

    [19] J. F. Burke, I. V. Yannas, W. C. Quinby Jr, C. C. Bondoc, W. K. Jung, “Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury,” Ann. Surg. 194, 413–428 (1981).

    [20] F. Manns, P. J. Milne, X. Gonzalez-Cirre, D. B. Denham, J. M. Parel, D. S. Robinson, “In situ temperature measurements with thermocouple probes during laser interstitial thermotherapy (LITT): Quantification and correction of a measurement artifact,” Lasers Surg. Med. 23, 94–103 (1998).

    [21] A. Robert, M. D. Weiss, “Comparison of endovenous radiofrequency versus 810 nm diode laser occlusion of large veins in an animal model,” Am. Soc. Dermatol. Surg. 28, 56–61 (2002). Google Scholar

    [22] I. Stadler, R. J. Lanzafame, R. Evans, V. Narayan, B. Dailey, N. Buehner, J. O. Naim, “830-nm irradiation increases the wound tensile strength in a diabetic murine model,” Lasers Surg. Med. 28, 220–226 (2001).

    [23] F. Xu, T. J. Lu, K. A. Seffen, E. Y. K. Ng, “Mathematical modeling of skin bioheat transfer,” Appl. Mech. Rev. 62, 1–35 (2009). Crossref, ISI, Google Scholar

    [24] B. J. Jeon, H. G. Choi, “Heat-transfer analysis of indirect moxibustion using unsteady conjugate heat-transfer solutions,” J. Mech. Sci. Technol. 24, 2051–2057 (2010).

    [25] A. M. Elliott, A. M. Shetty, J. Wang, J. D. Hazle, R. J. Stafford, “Use of gold nanoshells to constrain and enhance laser thermal therapy of metastatic liver tumours,” Int. J. Hypertherm. 26, 434–440 (2010).

    [26] M. Zhang, Z. Che, J. Chen, H. Zhao, L. Yang, Z. Zhong, J. Lu, “Experimental determination of thermal conductivity of water-agar gel at different concentrations and temperatures,” J. Chem. Eng. Data 56, 859–864 (2011).

    [27] D. Haemmerich, D. J. Schutt, I. dos Santos, J. G. Webster, D. M. Mahvi, “Measurement of temperature-dependent specific heat of biological tissues,” Physiol. Meas. 26, 59–67 (2005).

    [28] I. S. Saidi, “Transcutaneous optical measurement of hyperbilirubinemia in neonates,” Ph.D. Dissertation, Rice University, Houston, TX, USA (1992). Google Scholar

    [29] P. A. Hasgall, F. Di Gennaro, C. Baumgartner, E. Neufeld, B. Lloyd, M. C. Gosselin, D. Payne, A. Klingenbock, N. Kuster, “IT’IS Database for thermal and electromagnetic parameters of biological tissues,” Version 4.0, www.itis.ethz.ch/database (2018). Google Scholar

    [30] A. Banerjee, A. A. Ogale, C. Das, K. Mitra, C. Subramanian, “Temperature distribution in different materials due to short pulse laser irradiation,” Heat Transfer Eng. 26, 41–49 (2007).

    [31] J. Jiao, Z. Guo, “Thermal interaction of short-pulsed laser focused beams with skin tissues,” Phys. Med. Biol. 54, 4225–4241 (2009).

    Jiyong Cho, Bibin Prasad, Jung Kyung. Near-infrared laser irradiation of a multilayer agar-gel tissue phantom to induce thermal effect of traditional moxibustion[J]. Journal of Innovative Optical Health Sciences, 2018, 11(6): 1850033
    Download Citation