• Infrared and Laser Engineering
  • Vol. 52, Issue 9, 20220876 (2023)
Siyu Wang, Xiaogang Yang, Ruitao Lu, Qingge Li..., Jiwei Fan and Zhengjie Zhu|Show fewer author(s)
Author Affiliations
  • Missile Engineering Institute, PLA Rocket Force University of Engineering, Xi'an 710025, China
  • show less
    DOI: 10.3788/IRLA20220876 Cite this Article
    Siyu Wang, Xiaogang Yang, Ruitao Lu, Qingge Li, Jiwei Fan, Zhengjie Zhu. Infrared time-sensitive target detection technology based on cross-modal data augmentation[J]. Infrared and Laser Engineering, 2023, 52(9): 20220876 Copy Citation Text show less
    References

    [1] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, realtime object detection[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2016: 779788.

    [2] X Yu, S Hong, J Yu, et al. Research on a ship target data augmentation method of visible remote sensing image. Chinese Journal of Scientific Instrument, 41, 261-269(2020).

    [3] Y Ma, P Tang, L Zhao, et al. Review of data augmentation for image in deep learning. Image Graphics, 26, 487-502(2021).

    [4] A Krizhevsky, I Sutskever, G E Hinton. Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60, 84-90(2017).

    [5] Tayl L, Nitschke G. Improving deep learning with generic data augmentation[C]2018 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, 2018, 15421547.

    [6] Zhong Z, Zheng L, Kang G, et al. Rom erasing data augmentation[C]Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 1300113008.

    [7] D Ma, P Tang, L Zhao. SiftingGAN: Generating and sifting labeled samples to improve the remote sensing image scene classification baseline in vitro. IEEE Geoscience and Remote Sensing Letters, 16, 1046-1050(2019).

    [8] Gulrajani I, Ahmed F, Arjovsky M, et al. Improved training of wasserstein gans[EBOL]. (20171225) [20221206]. https:arxiv.gabs1704.00028.

    [9] Zheng Z, Zheng L, Yang Y. Unlabeled samples generated by gan improve the person reidentification baseline in vitro[C]Proceedings of the IEEE International Conference on Computer Vision, 2017: 37543762.

    [10] Zhong Z, Zheng L, Zheng Z, et al. Camera style adaptation f person reidentification[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2018: 51575166.

    [11] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detect[C]Proceedings of the IEEE European Conference on Computer Vision, 2016: 2137.

    [12] Redmon J, Divvala S, Girshick R, et al. You only look once: unified, realtime object detection[C]2016 IEEE Conference on Computer Vision Pattern Recognition, 2016: 779788.

    [13] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies f accurate object detection semantic segmentation[C] 2014 IEEE Comference on Computer Vision Pattern Recognition, 2014: 580587.

    [14] Girshick R. Fast rcnn[C]Proceedings of the IEEE International Conference on Computer Vision, 2015: 14401448.

    [15] M Ju, J Luo, G Liu, et al. ISTDet: An efficient end-to-end neural network for infrared small target detection. Infrared Physics & Technology, 114, 103659(2021).

    [16] S Yao, Q Zhu, T Zhang, et al. Infrared image small-target detection based on improved FCOS and spatio-temporal features. Electronics, 11, 933(2022).

    [17] X F Lu, X F Bai, S X Li, et al. Infrared small target detection method based on the improved weighted enhanced local contrast measurement. Infrared and Laser Engineering, 51, 20210914(2022).

    [18] R Q Jiang, Y P Peng, W X Xie, et al. Improved YOLOv4 small target detection algorithm with embedded scSE module. Journal of Graphics, 42, 546-555(2021).

    [19] Owens A, Wu J, McDermott J H, et al. Ambient sound provides supervision f visual learning[C]European conference on computer vision. Springer, Cham, 2016: 801816.

    [20] I Goodfellow, J Pouget-abadie, M Mirza, et al. Generative adversarial networks. Communications of the ACM, 63, 139-144(2020).

    [21] Hou Q, Zhou D, Feng J. Codinate attention f efficient mobile wk design[C]Proceedings of the IEEECVF Conference on Computer Vision Pattern Recognition. 2021: 1371313722.

    [22] Hu J, Shen L, Sun G. Squeezeexcitation wks[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2018: 71327141.

    [23] Woo S, Park J, Lee J Y, et al. Cbam: Convolutional block attention module[C]Proceedings of the European Conference on Computer Vision (ECCV), 2018: 319.

    [24] K Li, G Wan, G Cheng, et al. Object detection in optical remote sensing images: A survey and a new benchmark. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 296-307(2020).

    [25] Xia G S, Bai X, Ding J, et al. DOTA: A largescale dataset f object detection in aerial images[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2018: 39743983.

    [26] H Chen, Z Qi, Z Shi. Remote sensing image change detection with transformers. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-14(2021).

    Siyu Wang, Xiaogang Yang, Ruitao Lu, Qingge Li, Jiwei Fan, Zhengjie Zhu. Infrared time-sensitive target detection technology based on cross-modal data augmentation[J]. Infrared and Laser Engineering, 2023, 52(9): 20220876
    Download Citation