• Journal of Innovative Optical Health Sciences
  • Vol. 10, Issue 6, 1742008 (2017)
Fernando Zvietcovich1、*, Jannick P. Rolland2, and Kevin J. Parker1
Author Affiliations
  • 1Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627, USA
  • 2The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
  • show less
    DOI: 10.1142/s1793545817420081 Cite this Article
    Fernando Zvietcovich, Jannick P. Rolland, Kevin J. Parker. An approach to viscoelastic characterization of dispersive media by inversion of a general wave propagation model[J]. Journal of Innovative Optical Health Sciences, 2017, 10(6): 1742008 Copy Citation Text show less
    References

    [1] K. J. Parker, M. M. Doyley, D. J. Rubens , “Imaging the elastic properties of tissue: The 20 year perspective,” Phys. Med. Biol. 56 (1), R1 (2011).

    [2] C. Schmitt et al., “Noninvasive vascular elastography: Toward a complementary characterization tool of atherosclerosis in carotid arteries,” Ultrasound Med. Biol. 33 (12), 1841–1858 (2007).

    [3] J. A. Mulligan et al., “Emerging approaches for high-resolution imaging of tissue biomechanics with optical coherence elastography,” IEEE J. Sel. Top. Quantum Electron. 22 (3), 1–20 (2016).

    [4] W. Drexler et al., “Optical coherence tomography today: Speed, contrast, and multimodality,” J. Biomed. Opt. 19 (7), 071412–071412 (2014).

    [5] S. Wang, K. V. Larin , “Noncontact depth-resolved micro-scale optical coherence elastography of the cornea,” Biomed. Opt. Exp. 5 (11), 3807–3821 (2014).

    [6] S. Wang, K. V. Larin , “Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics,” Opt. Lett. 39 (1), 41–44 (2014).

    [7] C. Li et al., “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. Roy. Soc. Interf. 9 (70), 831–841 (2012).

    [8] K. M. Kennedy et al., “Quantitative micro-elastography: Imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5 15538-1–15538-12 (2015).

    [9] C. Li et al., “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer Lett. 357 (1), 121–128 (2015).

    [10] F. Zvietcovich et al., “Comparative study of shear wave-based elastography techniques in optical coherence tomography,” J. Biomed. Opt. 22 (3), 035010–035010 (2017).

    [11] K. V. Larin, D. D. Sampson , “Optical coherence elastography – OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Expr. 8 (2), 1172–1202 (2017).

    [12] K. J. Parker, N. Baddour , “The Gaussian shear wave in a dispersive medium,” Ultrasound Med. Biol. 40 (4), 675–684 (2014).

    [13] P. Garteiser et al., “MR elastography of liver tumours: Value of viscoelastic properties for tumour characterisation,” Europ. Radiol. 22 (10), 2169–2177 (2012).

    [14] K.-J. Streitberger et al., “High-resolution mechanical imaging of glioblastoma by multifrequency magnetic resonance elastography,” PLOS ONE 9 (10), e110588 (2014).

    [15] Z. Han et al., “Quantifying tissue viscoelasticity using optical coherence elastography and the Rayleigh wave model,” J. Biomed. Opt. 21 (9), 090504–090504 (2016).

    [16] X. Zhang , “Identification of the Rayleigh surface waves for estimation of viscoelasticity using the surface wave elastography technique,” J. Acoust. Soc. Am. 140 (5), 3619–3622 (2016).

    [17] Z. Han et al., “Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model,” J. Mech. Behav. Biomed. Mater. 66, 87–94 (2017).

    [18] P. Wijesinghe et al., “Parametric imaging of viscoelasticity using optical coherence elastography,” Phys. Med. Biol. 60 (6), 2293 (2015).

    [19] C. Schmitt, A. Hadj Henni, G. Cloutier , “Ultrasound dynamic micro-elastography applied to the viscoelastic characterization of soft tissues and arterial walls,” Ultrasound Med. Biol. 36 (9), 1492–1503 (2010).

    [20] I. Z. Nenadic et al., “Attenuation measuring ultrasound shearwave elastography and in vivo application in post-transplant liver patients,” Phys. Med. Biol. 62 (2), 484 (2017).

    [21] S. Kazemirad et al., “Ultrasound shear wave viscoelastography: Model-independent quantification of the complex shear modulus,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63 (9), 1399–1408 (2016).

    [22] N. C. Rouze, M. L. Palmeri, K. R. Nightingale , “An analytic, Fourier domain description of shear wave propagation in a viscoelastic medium using asymmetric Gaussian sources,” J. Acoust. Soc. Am. 138 (2), 1012–1022 (2015).

    [23] N. Leartprapun, R. Iyer, S. G. Adie , “Model-independent quantification of soft tissue viscoelasticity with dynamic optical coherence elastography,” Proc. Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXI, San Francisco, CA (2017).

    [24] K. F. Graff , Wave Motion in Elastic Solids, pp. 283–288. Dover Publications (2012).

    [25] N. Baddour , “Multidimensional wave field signal theory: Mathematical foundations,” AIP Adv. 1 (2), 022120 (2011).

    [26] E. L. Carstensen, K. J. Parker , “Physical models of tissue in shear fields,” Ultrasound Med. Biol. 40 (4), 655–674 (2014), This article is dedicated to our friend and colleague, Robert C. Waag.

    [27] D. T. Blackstock , Fundamentals of Physical Acoustics, Chap. 9, Wiley (2000).

    [28] F. Zvietcovich et al., “Experimental classification of surface waves in optical coherence elastography,” Proc., Optical Elastography and Tissue Biomechanics III, K. V. LarinD. D. Sampson, Eds. San Francisco, CA (2016), doi:https://doi.org/10.1117/12.2211420.

    [29] I. A. Viktorov , Rayleigh and Lamb Waves: Physical Theory and Applications, Chap. 1, Springer US (2013).

    [30] M. Abramowitz, I. A. Stegun , Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Dover Publications (2012).

    [31] M. Zhang et al., “Quantitative characterization of viscoelastic properties of human prostate correlated with histology,” Ultrasound Med. Biol. 34 (7), 1033–1042 (2008).

    [32] J. Yao et al., “Angular scan optical coherence tomography imaging and metrology of spherical gradient refractive index preforms,” Opt. Exp. 23 (5), 6428–6443 (2015).

    [33] P. Meemon, K. Lee, J. Rolland , “Doppler imaging with dual-detection full-range frequency domain optical coherence tomography,” Biomed. Opt. Expr. 1 (2), 537–552 (2010).

    [34] T. Loupas, R. B. Peterson, R. W. Gill , “Experimental evaluation of velocity and power estimation for ultrasound blood flow imaging, by means of a two-dimensional autocorrelation approach,” IEEE Trans. Ultrason. Ferroelect. Freq. Control 42 (4), 689–699 (1995).

    [35] J. J. Moré , “The Levenberg-Marquardt algorithm: Implementation and theory,” Proc. Biennial Conf. on Numerical Analysis, Dundee, June 28–July 1, 1977, G. A. Watson, Ed., pp. 105–116, Springer, Berlin (1978).

    [36] I. Z. Nenadic et al., “On Lamb and rayleigh wave convergence in viscoelastic tissues,” Phys. Med. Biol. 56 (20), 6723–6738 (2011).

    [37] K. J. Schubert, A. S. Herrmann , “On attenuation and measurement of Lamb waves in viscoelastic composites,” Compos. Struct. 94 (1), 177–185 (2011).

    [38] M. Singh et al., “Phase-sensitive optical coherence elastography at 1.5 million A-Lines per second,” Opt. Lett. 40 (11), 2588–2591 (2015).

    [39] S. Song et al., “Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate,” Appl. Phys. Lett. 108 (19), 191104 (2016).

    [40] C. H. Liu et al., “Non-contact single shot elastography using line field low coherence holography,” Biomed. Opt. Expr. 7 (8), 3021–3031 (2016).

    [41] S. Li et al., “Toward soft-tissue elastography using digital holography to monitor surface acoustic waves,” J. Biomed. Opt. 16 (11), 116005 (2011).

    Fernando Zvietcovich, Jannick P. Rolland, Kevin J. Parker. An approach to viscoelastic characterization of dispersive media by inversion of a general wave propagation model[J]. Journal of Innovative Optical Health Sciences, 2017, 10(6): 1742008
    Download Citation