• Chinese Journal of Lasers
  • Vol. 48, Issue 8, 0802001 (2021)
Luchan Lin1、2、*, Songling Xing2, Jinpeng Huo2, Yu Xiao2, Peng Peng3, Daozhi Shen2, Lei Liu2, and Guisheng Zou2
Author Affiliations
  • 1Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland;
  • 2Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
  • 3School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
  • show less
    DOI: 10.3788/CJL202148.0802001 Cite this Article Set citation alerts
    Luchan Lin, Songling Xing, Jinpeng Huo, Yu Xiao, Peng Peng, Daozhi Shen, Lei Liu, Guisheng Zou. Research Progress of Ultrafast Laser-Induced Nanowires Joining Technology[J]. Chinese Journal of Lasers, 2021, 48(8): 0802001 Copy Citation Text show less
    References

    [1] Duan X, Huang Y, Cui Y et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices[J]. Nature, 409, 66-69(2001).

    [2] Desai S B, Madhvapathy S R, Sachid A B et al. MoS2 transistors with 1-nanometer gate lengths[J]. Science, 354, 99-102(2016).

    [3] Cao Q, Tersoff J, Farmer D B et al. Carbon nanotube transistors scaled to a 40-nanometer footprint[J]. Science, 356, 1369-1372(2017).

    [4] Zhou Y. Microjoining and nanojoining[M], 545-576(2008).

    [5] Zhou Y, Hu A. From microjoining to nanojoining[J]. The Open Surface Science Journal, 3, 32-41(2011).

    [6] Hu A M, Janczak-Rusch J, Sano T. Joining technology innovations at the macro, micro, and nano levels[J]. Applied Sciences, 9, 3568(2019).

    [7] Chen C X, Yan L J, Kong E S W et al. Ultrasonic nanowelding of carbon nanotubes to metal electrodes[J]. Nanotechnology, 17, 2192-2197(2006).

    [8] Peng Y, Cullis T, Inkson B. Bottom-up nanoconstruction by the welding of individual metallic nanoobjects using nanoscale solder[J]. Nano Letters, 9, 91-96(2009). http://www.ncbi.nlm.nih.gov/pubmed/19072096/

    [9] Liu L, Shen D Z, Zou G S et al. Cold welding of Ag nanowires by large plastic deformation[J]. Scripta Materialia, 114, 112-116(2016).

    [10] Ye H K, Gu Z Y, Yu T et al. Integrating nanowires with substrates using directed assembly and nanoscale soldering[J]. IEEE Transactions on Nanotechnology, 5, 62-66(2006).

    [11] Celano T A, Hill D J, Zhang X et al. Capillarity-driven welding of semiconductor nanowires for crystalline and electrically ohmic junctions[J]. Nano Letters, 16, 5241-5246(2016). http://pubs.acs.org/doi/10.1021/acs.nanolett.6b02361

    [12] Xu S, Tian M, Wang J et al. Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam[J]. Small, 1, 1221-1229(2005).

    [13] Bo A, Alarco J, Zhu H Y et al. Nanojoint formation between ceramic titanate nanowires and spot melting of metal nanowires with electron beam[J]. ACS Applied Materials & Interfaces, 9, 9143-9151(2017).

    [14] Dhal S, Chatterjee S, Sarkar S et al. Nano-welding and junction formation in hydrogen titanate nanowires by low-energy nitrogen ion irradiation[J]. Nanotechnology, 26, 235601(2015).

    [15] Rajbhar M K, Möller W, Satpati B et al. Broad beam-induced fragmentation and joining of tungsten oxide nanorods: implications for nanodevice fabrication and the development of fusion reactors[J]. ACS Applied Nano Materials, 3, 9064-9075(2020).

    [16] Khan M R, Rauf Khan M A, Ahmad I et al. Joining of individual silicon carbide nanowires via proton beam irradiation[J]. Current Nanoscience, 14, 354-359(2018).

    [17] Zhang L Q, Tang Y S, Peng Q M et al. Ceramic nanowelding[J]. Nature Communications, 9, 1-7(2018).

    [18] Dai S W, Li Q, Liu G P et al. Laser-induced single point nanowelding of silver nanowires[J]. Applied Physics Letters, 108, 121103(2016).

    [19] Li Q, Liu G P, Yang H B et al. Optically controlled local nanosoldering of metal nanowires[J]. Applied Physics Letters, 108, 193101(2016).

    [20] Liu G P, Li Q, Qiu M. Sacrificial solder based nanowelding of ZnO nanowires[J]. Journal of Physics: Conference Series, 680, 012027(2016).

    [21] Huang J X, Kaner R B. Flash welding of conducting polymer nanofibres[J]. Nature Materials, 3, 783-786(2004).

    [22] Garnett E C, Cai W, Cha J J et al. Self-limited plasmonic welding of silver nanowire junctions[J]. Nature Materials, 11, 241-249(2012).

    [23] Nian Q, Saei M, Xu Y et al. Crystalline nanojoining silver nanowire percolated networks on flexible substrate[J]. ACS Nano, 9, 10018-10031(2015).

    [24] González-Rubio G, González-Izquierdo J, Bañares L et al. Femtosecond laser-controlled tip-to-tip assembly and welding of gold nanorods[J]. Nano Letters, 15, 8282-8288(2015).

    [25] Salmon A R, Kleemann M E, Huang J Y et al. Light-induced coalescence of plasmonic dimers and clusters[J]. ACS Nano, 14, 4982-4987(2020).

    [26] Sun K, Sun S Z, Qiu J R. Research progress on ultrashort pulsed laser welding of non-metallic materials[J]. Laser & Optoelectronics Progress, 57, 111422(2020).

    [27] Yu M, Huang T, Xiao R S. Long focal length green femtosecond laser welding of glass[J]. Chinese Journal of Lasers, 47, 0902005(2020).

    [28] Zhang G D, Cheng G H, Zhang W. Progress in ultrafast laser space-selective welding[J]. Chinese Optics, 13, 1209-1223(2020).

    [29] Theogene B, Huang C C, Cheng Y et al. Temperature monitoring for femtosecond laser welded interconnection of MWCNT regular structure on PET substrate[J]. Ferroelectrics, 563, 62-76(2020).

    [30] Maier S. Plasmonics: fundamentals and applications[M]. Springer Science & Business Media, 21-34(2007).

    [31] Huang H, Liu L, Peng P et al. Controlled joining of Ag nanoparticles with femtosecond laser radiation[J]. Journal of Applied Physics, 112, 123519(2012).

    [32] Herrmann L O, Valev V K, Tserkezis C et al. Threading plasmonic nanoparticle strings with light[J]. Nature Communications, 5, 4568(2014).

    [33] Baffou G, Quidant R. Thermo-plasmonics: using metallic nanostructures as nano-sources of heat[J]. Laser & Photonics Reviews, 7, 171-187(2013).

    [34] Baffou G, Quidant R, Girard C. Heat generation in plasmonic nanostructures: influence of morphology[J]. Applied Physics Letters, 94, 153109(2009).

    [35] Jauffred L, Samadi A, Klingberg H et al. Plasmonic heating of nanostructures[J]. Chemical Reviews, 119, 8087-8130(2019).

    [36] Jiang L, Tsai H L. Improved two-temperature model and its application in ultrashort laser heating of metal films[J]. Journal of Heat Transfer, 127, 1167-1173(2005).

    [37] Ren X Y, Li X, Wei F Q et al. Thermal field simulation of Ag nanoparticles induced by femtosecond laser[J]. Integrated Ferroelectrics, 208, 128-137(2020).

    [38] Hu A, Zhou Y, Duley W W. Femtosecond laser-induced nanowelding: fundamentals and applications[J]. The Open Surface Science Journal, 3, 42-49(2011).

    [39] Kuppe C, Rusimova K R, Ohnoutek L et al. “Hot” in plasmonics: temperature-related concepts and applications of metal nanostructures[J]. Advanced Optical Materials, 8, 2070001(2020).

    [40] Bell A P, Fairfield J A, McCarthy E K et al. Quantitative study of the photothermal properties of metallic nanowire networks[J]. ACS Nano, 9, 5551-5558(2015).

    [41] Sanchot A, Baffou G, Marty R et al. Plasmonic nanoparticle networks for light and heat concentration[J]. ACS Nano, 6, 3434-3440(2012).

    [42] Liu L, Peng P, Hu A M et al. Highly localized heat generation by femtosecond laser induced plasmon excitation in Ag nanowires[J]. Applied Physics Letters, 102, 073107(2013).

    [43] Ghenuche P, Cherukulappurath S, Taminiau T H et al. Spectroscopic mode mapping of resonant plasmon nanoantennas[J]. Physical Review Letters, 101, 116805(2008).

    [44] Liang T S, Shi P P, Su S Q et al. Near-perfect healing natures of silver five-fold twinned nanowire[J]. Computational Materials Science, 183, 109796(2020).

    [45] Lin L C, Liu L, Peng P et al. In situ nanojoining of Y-and T-shaped silver nanowires structures using femtosecond laser radiation[J]. Nanotechnology, 27, 125201(2016).

    [46] Ding S, Tian Y H, Jiang Z et al. Joining of silver nanowires by femtosecond laser irradiation method[J]. Materials Transactions, 56, 981-983(2015).

    [47] Hu A, Deng G L, Courvoisier S et al. Femtosecond laser induced surface melting and nanojoining for plasmonic circuits[J]. Proceedings of SPIE, 8809, 880907(2013).

    [48] Wan H, Gui C Q, Chen D et al. Scattering force and heating effect in laser-induced plasmonic welding of silver nanowire junctions[J]. Applied Optics, 59, 2186-2191(2020).

    [49] Han S, Hong S, Ham J et al. Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics[J]. Advanced Materials, 26, 5808-5814(2014).

    [50] Deng Y B, Bai Y F, Yu Y C et al. Laser nanojoining of copper nanowires[J]. Journal of Laser Applications, 31, 022414(2019).

    [51] Li Y Y, Li Y T, Feng L L et al. Metal alloy nanowire joining induced by femtosecond laser heating: a hybrid atomistic-continuum interpretation[J]. International Journal of Heat and Mass Transfer, 150, 119287(2020).

    [52] Lin L C, Zou G S, Liu L et al. Plasmonic engineering of metal-oxide nanowire heterojunctions in integrated nanowire rectification units[J]. Applied Physics Letters, 108, 203107(2016).

    [53] Xiao M, Lin L, Xing S et al. Nanojoining and tailoring of current-voltage characteristics of metal-P type semiconductor nanowire heterojunction by femtosecond laser irradiation[J]. Journal of Applied Physics, 127, 184901(2020).

    [54] Xing S L, Lin L C, Zou G S et al. Two-photon absorption induced nanowelding for assembling ZnO nanowires with enhanced photoelectrical properties[J]. Applied Physics Letters, 115, 103101(2019).

    [55] Lin L C, Liu L, Musselman K et al. Plasmonic-radiation-enhanced metal oxide nanowire heterojunctions for controllable multilevel memory[J]. Advanced Functional Materials, 26, 5979-5986(2016).

    [56] Xing S L, Lin L C, Huo J P et al. Plasmon-induced heterointerface thinning for Schottky barrier modification of core/shell SiC/SiO2 nanowires[J]. ACS Applied Materials & Interfaces, 11, 9326-9332(2019). http://www.researchgate.net/publication/331079544_Plasmon-Induced_Heterointerface_Thinning_for_Schottky_Barrier_Modification_of_CoreShell_SiCSiO2_Nanowires

    [57] Ha J, Lee B J, Hwang D J et al. Femtosecond laser nanowelding of silver nanowires for transparent conductive electrodes[J]. RSC Advances, 6, 86232-86239(2016).

    [58] Hu Y W, Liang C, Sun X Y et al. Enhancement of the conductivity and uniformity of silver nanowire flexible transparent conductive films by femtosecond laser-induced nanowelding[J]. Nanomaterials, 9, 673(2019). http://www.ncbi.nlm.nih.gov/pubmed/31052377

    [59] Lin L C, Huo J P, Peng P et al. Contact engineering of single core/shell SiC/SiO2 nanowire memory unit with high current tolerance using focused femtosecond laser irradiation[J]. Nanoscale, 12, 5618-5626(2020). http://pubs.rsc.org/en/content/articlelanding/2020/nr/c9nr10690a

    [60] Yu Y C, Deng Y B, Al Hasan M A et al. Femtosecond laser-induced non-thermal welding for a single Cu nanowire glucose sensor[J]. Nanoscale Advances, 2, 1195-1205(2020). http://pubs.rsc.org/en/content/articlelanding/2020/na/c9na00740g

    Luchan Lin, Songling Xing, Jinpeng Huo, Yu Xiao, Peng Peng, Daozhi Shen, Lei Liu, Guisheng Zou. Research Progress of Ultrafast Laser-Induced Nanowires Joining Technology[J]. Chinese Journal of Lasers, 2021, 48(8): 0802001
    Download Citation