• Photonic Sensors
  • Vol. 11, Issue 3, 325 (2021)
Mengqiu FAN1、2, Xiaocheng TIAN1, Dandan ZHOU1, Jiatian WEI3, Handing XIA1, Hongwei LV3, Hao ZHAO3, Dangpeng XU1、*, and Wanguo ZHENG1
Author Affiliations
  • 1Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
  • 2Graduate School of China Academy of Engineering Physics, Beijing 100088, China
  • 3No.34 Institute of China Electronics Technology Group Corporation, Guilin 541004, China
  • show less
    DOI: 10.1007/s13320-020-0591-4 Cite this Article
    Mengqiu FAN, Xiaocheng TIAN, Dandan ZHOU, Jiatian WEI, Handing XIA, Hongwei LV, Hao ZHAO, Dangpeng XU, Wanguo ZHENG. Two-Dimensional Tunable and Temperature-Insensitive Lyot Filter for FM-to-AM Compensation[J]. Photonic Sensors, 2021, 11(3): 325 Copy Citation Text show less
    References

    [1] J. Rothenberg, D. Browning, and R. Wilcox, “Issue of FM to AM conversion on the national ignition facility,” in Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, Monterey, CA, United States, 1999, pp.51–61.

    [2] J. D. Lindl, P. Amendt, and R. L. Berger, “The physics basis for ignition using indirect-drive targets on the national ignition facility,” Physics of Plasmas, 2004, 11(2): 339–491.

    [3] S. Hocquet, D. Penninckx, E. Bordenave, C. Gouédard, and Y. Jaouen, “FM-to-AM conversion in high-power lasers,” Applied Optics, 2008, 47(18): 3338–3349.

    [4] W. G. Zheng, X. F. Wei, Q. H. Zhu, F. Jing, D. X. Hu, X. D. Yuan, et al., “Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility,” Matter and Radiation at Extremes, 2017, 2(5): 243–255.

    [5] C. Dorrer, A. V. Okishev, R. G. Roides, R. Cuffney, W. Bittle, and J. D. Zuegel, “Fiber front end for an OMEGA EP demonstration of beam-smoothing techniques for NIF polar-drive ignition,” in Conference on Lasers and Electro-Optics 2012, San Jose, California, USA, May, 2012, pp.CTu3M.2.

    [6] J. F. Gleyze, J. Hares, S. Vidal, N. Beck, J. Dubertrand, and A. Perrin, “Recent advances in the front-end sources of the LMJ fusion laser,” in High Power Lasers for Fusion Research, San Francisco, California, USA, February, 2011, pp. 79160I.

    [7] D. P. Xu, X. C. Tian, D. D. Zhou, Z. Y. Zong, M. Q. Fan, R. Zhang, et al., “Temporal pulse precisely sculpted millijoule-level fiber laser injection system for high-power laser driver,” Applied Optics, 2017, 56(10): 2661–2666.

    [8] R. Li, W. Fan, Y. E. Jiang, Z. Qiao, P. Zhang, and Z. Q. Lin, “Tunable compensation of GVD-induced FM-AM conversion in the front end of high-power lasers,” Applied Optics, 2017, 56(4): 993–998.

    [9] Z. Qiao, X. C. Wang, W. Fan, X. C. Li, Y. E. Jiang, R. Li, et al., “Suppression of FM-to-AM modulation by polarizing fiber front end for high-power lasers,” Applied Optics, 2016, 55(29): 8352–8358.

    [10] D. P. Xu, J. J. Wang, M. Z. Li, H. Lin, R. Zhang, Y. Deng, et al., “Weak etalon effect in wave plates can introduce significant FM-to-AM modulations in complex laser systems,” Optics Express, 2010, 18(7): 6621–6627.

    [11] Z. Y. Chen, Y. E. Jiang, J. F. Wang, W. Fan, and X. C. Li, “Compensation system for FM-to-AM effects in high-power laser system,” in Applied Optics and Photonics China, AOPC 2015, Beijing, China, 2015, pp. 9671.

    [12] D. P. Xu, Z. H. Huang, J. J. Wang, M. Z. Li, H. H. Lin, R. Zhang, et al., “A fiber-based polarization–rotation filter utilized to suppress the FM-to-AM effect in a large-scale laser facility,” Journal of Optics, 2013, 15(8): 085702: 1–4.

    [13] S. Vidal, J. Luce, and D. Penninckx, “Experimental demonstration of linear precompensation of a nonlinear transfer function due to second-harmonic generation,” Optics Letters, 2011, 36(1): 88–90.

    [14] M. X. Wang, S. N. Fu, P. Shum, N. Q. Ngo, J. Wu, and J. T. Lin, “A tunable Lyot birefringent filter with variable channel spacing and wavelength using nonlinear polarization rotation in an SOA”, IEEE Photonics Technology Letters, 2008, 20(18): 1527–1529.

    [15] D. Penninckx, N. Beck, J. F. Gleyze, and L. Videau, “Signal propagation over polarization-maintaining fibers: problem and solutions,” Journal of Lightwave Technology, 2006, 24(11): 4197–4207.

    [16] S. Liu, F. P. Yan, F. Ting, L. N. Zhang, Z. Y. Bai, W. G. Han, et al., “Multi-wavelength thulium-doped fiber laser using a fiber-based Lyot filter,” IEEE Photonics Technology Letters, 2016, 28(8): 864–867.

    [17] J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. Macchesney, and R. E. Howard, “A single-polarization fiber,” Journal of Lightwave Technology, 1983, 1(2): 370–374.

    [18] D. A. Nolan, G. E. Berkey, M. J. Li, X. Chen, W. A. Wood, and L. A. Zenteno, “Single-polarization fiber with a high extinction ratio,” Optics Letters, 2004, 29(16): 1855–1857.

    [19] H. Sunnerud, C. J. Xie, M. Karlsson, R. Samuelsson, and P. A. Andrekson, “A comparison between different PMD compensation techniques,” Journal of Lightwave Technology, 2002, 20(3): 368.

    [20] D. H. Goldstein, Polarized light. Florida: CRC Press, 2011.

    [21] T. Martynkien, M. Szpulak, and W. Urbanczyk, “Modeling and measurement of temperature sensitivity in birefringent photonic crystal holey fibers,” Applied Optics, 2005, 44(36): 7780–7788.

    [22] L. Lu, Y. H. Yang, and H. Y. Li, “Study of polarization-maintaining photonic crystal fibers with zero birefringent temperature sensitive coefficient,” Acta Optica Sinica, 2015, 35(10): 1006006.

    [23] C. L. Zhao, X. F. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photonics Technology Letters, 2004, 16(11): 2535–2537.

    [24] G. W. Fu, Y. P. Li, X. H. Fu, W. Jin, and W. H. Bi, “Temperature insensitive curvature sensor based on cascading photonic crystal fiber,” Optical Fiber Technology, 2018, 41: 64–68.

    Mengqiu FAN, Xiaocheng TIAN, Dandan ZHOU, Jiatian WEI, Handing XIA, Hongwei LV, Hao ZHAO, Dangpeng XU, Wanguo ZHENG. Two-Dimensional Tunable and Temperature-Insensitive Lyot Filter for FM-to-AM Compensation[J]. Photonic Sensors, 2021, 11(3): 325
    Download Citation