• Photonics Research
  • Vol. 11, Issue 5, 787 (2023)
Xitong Hong1, Xingqiang Liu2、3、*, Lei Liao2、4、*, and Xuming Zou1、2、5、*
Author Affiliations
  • 1Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
  • 2State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
  • 3e-mail: liuxq@hnu.edu.cn
  • 4e-mail: liaolei@whu.edu.cn
  • 5e-mail: zouxuming@hnu.edu.cn
  • show less
    DOI: 10.1364/PRJ.480057 Cite this Article Set citation alerts
    Xitong Hong, Xingqiang Liu, Lei Liao, Xuming Zou. Review on metal halide perovskite-based optoelectronic synapses[J]. Photonics Research, 2023, 11(5): 787 Copy Citation Text show less
    References

    [1] C.-M. Yang, T.-C. Chen, D. Verma, L.-J. Li, B. Liu, W.-H. Chang, C.-S. Lai. Bidirectional all-optical synapses based on a 2D Bi2O2Se/graphene hybrid structure for multifunctional optoelectronics. Adv. Funct. Mater., 30, 2001598(2020).

    [2] L. Zhou, S. Yang, G. Ding, J.-Q. Yang, Y. Ren, S.-R. Zhang, J.-Y. Mao, Y. Yang, Y. Zhou, S.-T. Han. Tunable synaptic behavior realized in C3N composite based memristor. Nano Energy, 58, 293-303(2019).

    [3] S.-R. Zhang, L. Zhou, J.-Y. Mao, Y. Ren, J.-Q. Yang, G.-H. Yang, X. Zhu, S.-T. Han, V. A. Roy, Y. Zhou. Artificial synapse emulated by charge trapping-based resistive switching device. Adv. Mater. Technol., 4, 1800342(2019).

    [4] X. Yan, J. Zhao, S. Liu, Z. Zhou, Q. Liu, J. Chen, X. Y. Liu. Memristor with Ag-cluster-doped TiO2 films as artificial synapse for neuroinspired computing. Adv. Funct. Mater., 28, 1705320(2018).

    [5] F. A. Azevedo, L. R. Carvalho, L. T. Grinberg, J. M. Farfel, R. E. Ferretti, R. E. Leite, W. J. Filho, R. Lent, S. Herculano-Houzel. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol., 513, 532-541(2009).

    [6] D. R. Chialvo. Emergent complex neural dynamics. Nat. Phys., 6, 744-750(2010).

    [7] Y. Tang, J. R. Nyengaard, D. M. De Groot, H. J. G. Gundersen. Total regional and global number of synapses in the human brain neocortex. Synapse, 41, 258-273(2001).

    [8] Z. Zou, Y. Kim, F. Imani, H. Alimohamadi, R. Cammarota, M. Imani. Scalable edge-based hyperdimensional learning system with brain-like neural adaptation. Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 1-15(2021).

    [9] R. Legenstein. Nanoscale connections for brain-like circuits. Nature, 521, 37-38(2015).

    [10] S. B. Eryilmaz, D. Kuzum, R. Jeyasingh, S. Kim, M. BrightSky, C. Lam, H.-S. P. Wong. Brain-like associative learning using a nanoscale non-volatile phase change synaptic device array. Front. Neurosci., 8, 205(2014).

    [11] M. V. DeBole, B. Taba, A. Amir, F. Akopyan, A. Andreopoulos, W. P. Risk, J. Kusnitz, C. O. Otero, T. K. Nayak, R. Appuswamy, P. J. Carlson, A. S. Cassidy, P. Datta, S. K. Esser, G. J. Garreau, K. L. Holland, S. Lekuch, M. Mastro, J. McKinstry, C. di Nolfo, B. Paulovicks, J. Sawada, K. Schleupen, B. G. Shaw, J. L. Klamo, M. D. Flickner, J. V. Arthur, D. S. Modha. TrueNorth: accelerating from zero to 64 million neurons in 10 years. Computer, 52, 20-29(2019).

    [12] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson, D. S. Modha. TrueNorth: design and tool flow of a 65  mW 1  million neuron programmable neurosynaptic chip. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 34, 1537-1557(2015).

    [13] G. Haessig, A. Cassidy, R. Alvarez, R. Benosman, G. Orchard. Spiking optical flow for event-based sensors using IBM’s TrueNorth neurosynaptic system. IEEE Trans. Biomed. Circuits Syst., 12, 860-870(2018).

    [14] S. Oh, Z. Huang, Y. Shi, D. Kuzum. The impact of resistance drift of phase change memory (PCM) synaptic devices on artificial neural network performance. IEEE Electron Device Lett., 40, 1325-1328(2019).

    [15] S. La Barbera, D. R. Ly, G. Navarro, N. Castellani, O. Cueto, G. Bourgeois, B. De Salvo, E. Nowak, D. Querlioz, E. Vianello. Narrow heater bottom electrode-based phase change memory as a bidirectional artificial synapse. Adv. Electron. Mater., 4, 1800223(2018).

    [16] S. Yu, Y. Wu, R. Jeyasingh, D. Kuzum, H.-S. P. Wong. An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation. IEEE Trans. Electron Devices, 58, 2729-2737(2011).

    [17] X. Yan, Z. Zhou, B. Ding, J. Zhao, Y. Zhang. Superior resistive switching memory and biological synapse properties based on a simple TiN/SiO2/p-Si tunneling junction structure. J. Mater. Chem. C, 5, 2259-2267(2017).

    [18] M. Lederer, T. Kämpfe, T. Ali, F. Müller, R. Olivo, R. Hoffmann, N. Laleni, K. Seidel. Ferroelectric field effect transistors as a synapse for neuromorphic application. IEEE Trans. Electron Devices, 68, 2295-2300(2021).

    [19] B. Jeong, P. Gkoupidenis, K. Asadi. Solution-processed perovskite field-effect transistor artificial synapses. Adv. Mater., 33, 2104034(2021).

    [20] W. Huang, P. Hang, Y. Wang, K. Wang, S. Han, Z. Chen, W. Peng, Y. Zhu, M. Xu, Y. Zhang, Y. Fang, X. Yu, D. Yang, X. Pi. Zero-power optoelectronic synaptic devices. Nano Energy, 73, 104790(2020).

    [21] H. Duan, K. Javaid, L. Liang, L. Huang, J. Yu, H. Zhang, J. Gao, F. Zhuge, T.-C. Chang, H. Cao. Broadband optoelectronic synaptic thin-film transistors based on oxide semiconductors. Phys. Status Solidi RRL, 14, 1900630(2020).

    [22] H. Li, X. Jiang, W. Ye, H. Zhang, L. Zhou, F. Zhang, D. She, Y. Zhou, S.-T. Han. Fully photon modulated heterostructure for neuromorphic computing. Nano Energy, 65, 104000(2019).

    [23] L. Yin, W. Huang, R. Xiao, W. Peng, Y. Zhu, Y. Zhang, X. Pi, D. Yang. Optically stimulated synaptic devices based on the hybrid structure of silicon nanomembrane and perovskite. Nano Lett., 20, 3378-3387(2020).

    [24] Q. Li, T. Wang, Y. Fang, X. Hu, C. Tang, X. Wu, H. Zhu, L. Ji, Q.-Q. Sun, D. W. Zhang, L. Chen. Ultralow power wearable organic ferroelectric device for optoelectronic neuromorphic computing. Nano Lett., 22, 6435-6443(2022).

    [25] Y. Sun, M. Li, Y. Ding, H. Wang, H. Wang, Z. Chen, D. Xie. Programmable van-der-Waals heterostructure-enabled optoelectronic synaptic floating-gate transistors with ultra-low energy consumption. InfoMat, 4, e12317(2022).

    [26] N. Li, C. He, Q. Wang, J. Tang, Q. Zhang, C. Shen, J. Tang, H. Huang, S. Wang, J. Li, B. Huang, Z. Wei, Y. Guo, J. Yuan, W. Yang, R. Yang, D. Shi, G. Zhang. Gate-tunable large-scale flexible monolayer MoS2 devices for photodetectors and optoelectronic synapses. Nano Res., 15, 5418-5424(2022).

    [27] R. Zhu, H. Liang, S. Hu, Y. Wang, Z. Mei. Amorphous-Ga2O3 optoelectronic synapses with ultra-low energy consumption. Adv. Electron. Mater., 8, 2100741(2022).

    [28] P. Lei, H. Duan, L. Qin, X. Wei, R. Tao, Z. Wang, F. Guo, M. Song, W. Jie, J. Hao. High-performance memristor based on 2D layered BiOI nanosheet for low-power artificial optoelectronic synapses. Adv. Funct. Mater., 32, 2201276(2022).

    [29] W. Zhang, G. E. Eperon, H. J. Snaith. Metal halide perovskites for energy applications. Nat. Energy, 1, 16048(2016).

    [30] C. Zhou, H. Lin, Q. He, L. Xu, M. Worku, M. Chaaban, S. Lee, X. Shi, M.-H. Du, B. Ma. Low dimensional metal halide perovskites and hybrids. Mater. Sci. Eng. R, 137, 38-65(2019).

    [31] M. Baranowski, P. Plochocka. Excitons in metal-halide perovskites. Adv. Energy Mater., 10, 1903659(2020).

    [32] S. D. Stranks, H. J. Snaith. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol., 10, 391-402(2015).

    [33] X.-K. Liu, W. Xu, S. Bai, Y. Jin, J. Wang, R. H. Friend, F. Gao. Metal halide perovskites for light-emitting diodes. Nat. Mater., 20, 10-21(2021).

    [34] L. Lei, Q. Dong, K. Gundogdu, F. So. Metal halide perovskites for laser applications. Adv. Funct. Mater., 31, 2010144(2021).

    [35] Y. Hou, L. Wang, X. Zou, D. Wan, C. Liu, G. Li, X. Liu, Y. Liu, C. Jiang, J. C. Ho, L. Liao. Substantially improving device performance of all-inorganic perovskite-based phototransistors via indium tin oxide nanowire incorporation. Small, 16, 1905609(2020).

    [36] S. Wei, F. Wang, X. Zou, L. Wang, C. Liu, X. Liu, W. Hu, Z. Fan, J. C. Ho, L. Liao. Flexible quasi-2D perovskite/IGZO phototransistors for ultrasensitive and broadband photodetection. Adv. Mater., 32, 1907527(2020).

    [37] L. Wang, X. Zou, J. Lin, J. Jiang, Y. Liu, X. Liu, X. Zhao, Y. F. Liu, J. C. Ho, L. Liao. Perovskite/black phosphorus/MoS2 photogate reversed photodiodes with ultrahigh light on/off ratio and fast response. ACS Nano, 13, 4804-4813(2019).

    [38] J. Jiang, X. Zou, Y. Lv, Y. Liu, W. Xu, Q. Tao, Y. Chai, L. Liao. Rational design of Al2O3/2D perovskite heterostructure dielectric for high performance MoS2 phototransistors. Nat. Commun., 11, 4266(2020).

    [39] Q. Tian, R. Hong, C. Liu, X. Hong, S. Zhang, L. Wang, Y. Lv, X. Liu, X. Zou, L. Liao. Flexible SnO optoelectronic memory based on light-dependent ionic migration in Ruddlesden–Popper perovskite. Nano Lett., 22, 494-500(2021).

    [40] B. R. Sutherland, E. H. Sargent. Perovskite photonic sources. Nat. Photonics, 10, 295-302(2016).

    [41] H. Dong, C. Zhang, X. Liu, J. Yao, Y. S. Zhao. Materials chemistry and engineering in metal halide perovskite lasers. Chem. Soc. Rev., 49, 951-982(2020).

    [42] F. P. Garca de Arquer, A. Armin, P. Meredith, E. H. Sargent. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater., 2, 16100(2017).

    [43] Z.-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, R. H. Friend. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol., 9, 687-692(2014).

    [44] L. M. Herz. Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett., 2, 1539-1548(2017).

    [45] G. Zhou, B. Su, J. Huang, Q. Zhang, Z. Xia. Broad-band emission in metal halide perovskites: Mechanism, materials, and applications. Mater. Sci. Eng. R, 141, 100548(2020).

    [46] H.-S. Kim, I. Mora-Sero, V. Gonzalez-Pedro, F. Fabregat-Santiago, E. J. Juarez-Perez, N.-G. Park, J. Bisquert. Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nat. Commun., 4, 2242(2013).

    [47] J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. Van Schilfgaarde, A. Walsh. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett., 14, 2584-2590(2014).

    [48] H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.-W. Wang, K. Wojciechowski, W. Zhang. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett., 5, 1511-1515(2014).

    [49] Y. Zhang, M. Liu, G. E. Eperon, T. C. Leijtens, D. McMeekin, M. Saliba, W. Zhang, M. de Bastiani, A. Petrozza, L. M. Herz, M. B. Johnston, H. Lin, H. J. Snaith. Charge selective contacts, mobile ions and anomalous hysteresis in organic–inorganic perovskite solar cells. Mater. Horiz., 2, 315-322(2015).

    [50] D. A. Jacobs, Y. Wu, H. Shen, C. Barugkin, F. J. Beck, T. P. White, K. Weber, K. R. Catchpole. Hysteresis phenomena in perovskite solar cells: the many and varied effects of ionic accumulation. Phys. Chem. Chem. Phys., 19, 3094-3103(2017).

    [51] J. Lao, M. Yan, B. Tian, C. Jiang, C. Luo, Z. Xie, Q. Zhu, Z. Bao, N. Zhong, X. Tang, L. Sun, G. Wu, J. Wang, H. Peng, J. Chu, C. Duan. Ultralow-power machine vision with self-powered sensor reservoir. Adv. Sci. Weinheim, 9, 2106092(2022).

    [52] Y. Song, X. Xu, Y. Zhang, Z. Han, J. Liu, J. Li, Y. Zou. Light-induced perovskite dynamic transformation enabling a photodetector to mimic a neuromorphic vision sensing system. J. Mater. Chem. C, 10, 3387-3395(2022).

    [53] J. Gong, H. Wei, Y. Ni, S. Zhang, Y. Du, W. Xu. Methylammonium halide-doped perovskite artificial synapse for light-assisted environmental perception and learning. Mater. Today Phys., 21, 100540(2021).

    [54] S. Hu, Y. Liu, T. Chen, Z. Liu, Q. Yu, L. Deng, Y. Yin, S. Hosaka. Emulating the paired-pulse facilitation of a biological synapse with a NiOx-based memristor. Appl. Phys. Lett., 102, 183510(2013).

    [55] Y. Wang, Y. Zhu, Y. Li, Y. Zhang, D. Yang, X. Pi. Dual-modal optoelectronic synaptic devices with versatile synaptic plasticity. Adv. Funct. Mater., 32, 2107973(2022).

    [56] J. Zhang, T. Sun, S. Zeng, D. Hao, B. Yang, S. Dai, D. Liu, L. Xiong, C. Zhao, J. Huang. Tailoring neuroplasticity in flexible perovskite QDS-based optoelectronic synaptic transistors by dual modes modulation. Nano Energy, 95, 106987(2022).

    [57] C. Han, X. Han, J. Han, M. He, S. Peng, C. Zhang, X. Liu, J. Gou, J. Wang. Light-stimulated synaptic transistor with high PPF feature for artificial visual perception system application. Adv. Funct. Mater., 32, 2113053(2022).

    [58] Y. Cheng, H. Li, B. Liu, L. Jiang, M. Liu, H. Huang, J. Yang, J. He, J. Jiang. Vertical 0D-perovskite/2D-MoS2 van der Waals heterojunction phototransistor for emulating photoelectric-synergistically classical Pavlovian conditioning and neural coding dynamics. Small, 16, 2005217(2020).

    [59] T.-J. Lee, K.-R. Yun, S.-K. Kim, J.-H. Kim, J. Jin, K.-B. Sim, D.-H. Lee, G. W. Hwang, T.-Y. Seong. Realization of an artificial visual nervous system using an integrated optoelectronic device array. Adv. Mater., 33, 2105485(2021).

    [60] X. Huang, Q. Li, W. Shi, K. Liu, Y. Zhang, Y. Liu, X. Wei, Z. Zhao, Y. Guo, Y. Liu. Dual-mode learning of ambipolar synaptic phototransistor based on 2D perovskite/organic heterojunction for flexible color recognizable visual system. Small, 17, 2102820(2021).

    [61] Y. Wang, Z. Lv, J. Chen, Z. Wang, Y. Zhou, L. Zhou, X. Chen, S.-T. Han. Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv. Mater., 30, 1802883(2018).

    [62] J. Liu, Z. Yang, Z. Gong, Z. Shen, Y. Ye, B. Yang, Y. Qiu, B. Ye, L. Xu, T. Guo, S. Xu. Weak light-stimulated synaptic hybrid phototransistors based on island like perovskite films prepared by spin coating. ACS Appl. Mater. Interfaces, 13, 13362-13371(2021).

    [63] L. Yin, C. Han, Q. Zhang, Z. Ni, S. Zhao, K. Wang, D. Li, M. Xu, H. Wu, X. Pi, D. Yang. Synaptic silicon-nanocrystal phototransistors for neuromorphic computing. Nano Energy, 63, 103859(2019).

    [64] Z. Xiao, J. Huang. Energy-efficient hybrid perovskite memristors and synaptic devices. Adv. Electron. Mater., 2, 1600100(2016).

    [65] T.-Y. Wang, J.-L. Meng, M.-Y. Rao, Z.-Y. He, L. Chen, H. Zhu, Q.-Q. Sun, S.-J. Ding, W.-Z. Bao, P. Zhou, D. W. Zhang. Three-dimensional nanoscale flexible memristor networks with ultralow power for information transmission and processing application. Nano Lett., 20, 4111-4120(2020).

    [66] J. Li, C. Ge, J. Du, C. Wang, G. Yang, K. Jin. Reproducible ultrathin ferroelectric domain switching for high-performance neuromorphic computing. Adv. Mater., 32, 1905764(2020).

    [67] X. Hong, Y. Huang, Q. Tian, S. Zhang, C. Liu, L. Wang, K. Zhang, J. Sun, L. Liao, X. Zou. Two-dimensional perovskite-gated AlGaN/GaN high-electron-mobility-transistor for neuromorphic vision sensor. Adv. Sci. Weinheim, 9, 2202019(2022).

    [68] E. S. Fortune, G. J. Rose. Short-term synaptic plasticity as a temporal filter. Trends Neurosci., 24, 381-385(2001).

    [69] L. Q. Zhu, C. J. Wan, L. Q. Guo, Y. Shi, Q. Wan. Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun., 5, 3158(2014).

    [70] D. O. Hebb. The Organization of Behavior: A Neuropsychological Theory(2005).

    [71] G.-Q. Bi, M.-M. Poo. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci., 18, 10464-10472(1998).

    [72] R. S. Zucker, W. G. Regehr. Short-term synaptic plasticity. Annu. Rev. Physiol., 64, 355-405(2002).

    [73] S. Martin, P. D. Grimwood, R. G. Morris. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci., 23, 649-711(2000).

    [74] P. P. Atluri, W. G. Regehr. Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. J. Neurosci., 16, 5661-5671(1996).

    [75] Y.-X. Hou, Y. Li, Z.-C. Zhang, J.-Q. Li, D.-H. Qi, X.-D. Chen, J.-J. Wang, B.-W. Yao, M.-X. Yu, T.-B. Lu, J. Zhang. Large-scale and flexible optical synapses for neuromorphic computing and integrated visible information sensing memory processing. ACS Nano, 15, 1497-1508(2020).

    [76] X. Zhu, W. D. Lu. Optogenetics-inspired tunable synaptic functions in memristors. ACS Nano, 12, 1242-1249(2018).

    [77] B. Sturman, E. Podivilov, M. Gorkunov. Origin of stretched exponential relaxation for hopping-transport models. Phys. Rev. Lett., 91, 176602(2003).

    [78] J. Kakalios, N. W. Jackson, R. Street. Stretched-exponential relaxation arising from dispersive diffusion of hydrogen in amorphous silicon. Phys. Rev. Lett., 59, 1037-1040(1987).

    [79] J. Phillips. Stretched exponential relaxation in molecular and electronic glasses. Rep. Prog. Phys., 59, 1133-1207(1996).

    [80] S. Gao, G. Liu, H. Yang, C. Hu, Q. Chen, G. Gong, W. Xue, X. Yi, J. Shang, R.-W. Li. An oxide Schottky junction artificial optoelectronic synapse. ACS Nano, 13, 2634-2642(2019).

    [81] S. Wang, C. Chen, Z. Yu, Y. He, X. Chen, Q. Wan, Y. Shi, D. W. Zhang, H. Zhou, X. Wang, P. Zhou. A MoS2/PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility. Adv. Mater., 31, 1806227(2019).

    [82] Y. Wang, J. Yang, Z. Wang, J. Chen, Q. Yang, Z. Lv, Y. Zhou, Y. Zhai, Z. Li, S.-T. Han. Near-infrared annihilation of conductive filaments in quasiplane MoSe2/Bi2Se3 nanosheets for mimicking heterosynaptic plasticity. Small, 15, 1805431(2019).

    [83] D. Debanne, N. C. Guerineau, B. Gähwiler, S. M. Thompson. Paired-pulse facilitation and depression at unitary synapses in rat hippocampus: quantal fluctuation affects subsequent release. J. Physiol., 491, 163-176(1996).

    [84] Y. H. Liu, L. Q. Zhu, P. Feng, Y. Shi, Q. Wan. Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes. Adv. Mater., 27, 5599-5604(2015).

    [85] G. Liu, C. Wang, W. Zhang, L. Pan, C. Zhang, X. Yang, F. Fan, Y. Chen, R.-W. Li. Organic biomimicking memristor for information storage and processing applications. Adv. Electron. Mater., 2, 1500298(2016).

    [86] J.-T. Yang, C. Ge, J.-Y. Du, H.-Y. Huang, M. He, C. Wang, H.-B. Lu, G.-Z. Yang, K.-J. Jin. Artificial synapses emulated by an electrolyte-gated tungsten-oxide transistor. Adv. Mater., 30, 1801548(2018).

    [87] F. Huang, F. Fang, Y. Zheng, Q. You, H. Li, S. Fang, X. Cong, K. Jiang, Y. Wang, C. Han, W. Chen, Y. Shi. Visible-light stimulated synaptic plasticity in amorphous indium-gallium-zinc oxide enabled by monocrystalline double perovskite for high-performance neuromorphic applications. Nano Res., 16, 1304-1312(2022).

    [88] Y. Li, Y. Zhong, L. Xu, J. Zhang, X. Xu, H. Sun, X. Miao. Ultrafast synaptic events in a chalcogenide memristor. Sci. Rep., 3, 1619(2013).

    [89] R. C. Atkinson, R. M. Shiffrin. Human memory: a proposed system and its control processes. Psychology of Learning and Motivation, 2, 89-195(1968).

    [90] S. Zhang, L. Yang, C. Jiang, L. Sun, K. Guo, H. Han, W. Xu. Digitally aligned ZnO nanowire array based synaptic transistors with intrinsically controlled plasticity for short-term computation and long-term memory. Nanoscale, 13, 19190-19199(2021).

    [91] M.-K. Kim, J.-S. Lee. Short-term plasticity and long-term potentiation in artificial biosynapses with diffusive dynamics. ACS Nano, 12, 1680-1687(2018).

    [92] A. Suvrathan, H. L. Payne, J. L. Raymond. Timing rules for synaptic plasticity matched to behavioral function. Neuron, 92, 959-967(2016).

    [93] G. Rachmuth, H. Z. Shouval, M. F. Bear, C.-S. Poon. A biophysically-based neuromorphic model of spike rate- and timing-dependent plasticity. Proc. Natl. Acad. Sci. USA, 108, E1266-E1274(2011).

    [94] N. Andersen, N. Krauth, S. Nabavi. Hebbian plasticity in vivo: relevance and induction. Curr. Opin. Neurobiol., 45, 188-192(2017).

    [95] D. Fernandes, A. L. Carvalho. Mechanisms of homeostatic plasticity in the excitatory synapse. J. Neurochem., 139, 973-996(2016).

    [96] K. Wang, S. Dai, Y. Zhao, Y. Wang, C. Liu, J. Huang. Light-stimulated synaptic transistors fabricated by a facile solution process based on inorganic perovskite quantum dots and organic semiconductors. Small, 15, 1900010(2019).

    [97] E. Ercan, Y.-C. Lin, W.-C. Yang, W.-C. Chen. Self-assembled nanostructures of quantum dot/conjugated polymer hybrids for photonic synaptic transistors with ultralow energy consumption and zero-gate bias. Adv. Funct. Mater., 32, 2107925(2022).

    [98] M.-K. Song, H. Lee, J. H. Yoon, Y.-W. Song, S. D. Namgung, T. Sung, Y.-S. Lee, J.-S. Lee, K. T. Nam, J.-Y. Kwon. Humidity-induced synaptic plasticity of ZnO artificial synapses using peptide insulator for neuromorphic computing. J. Mater. Sci. Technol., 119, 150-155(2022).

    [99] M. H. Hennig. Theoretical models of synaptic short term plasticity. Front. Comput. Neurosci., 7, 45(2013).

    [100] L. G. Morris, S. L. Hooper. Muscle response to changing neuronal input in the lobster (Panulirus interruptus) stomatogastric system: spike number-versus spike frequency-dependent domains. J. Neurosci., 17, 5956-5971(1997).

    [101] P. Subin, A. Asha, K. Saji, M. Jayaraj. Spike-dependent plasticity modulation in TiO2-based synaptic device. J. Mater. Sci. Mater. Electron., 32, 13051-13061(2021).

    [102] S. Poddar, Z. Chen, Z. Ma, Y. Zhang, C. L. J. Chan, B. Ren, Q. Zhang, D. Zhang, G. Shen, H. Zeng, Z. Fan. Robust lead-free perovskite nanowire array-based artificial synapses exemplifying gestalt principle of closure via a letter recognition scheme. Adv. Intell. Syst., 4, 2200065(2022).

    [103] S. Zhang, K. Guo, H. Han, H. Yu, H. Wei, J. Gong, W. Xu. Multiplexed neurotransmission emulated by a p–n cross nanowire synaptic transistor for satiety, depression, and drug withdrawal. Adv. Funct. Mater., 31, 2101917(2021).

    [104] J. Ren, H. Shen, Z. Liu, M. Xu, D. Li. Artificial synapses based on WSe2 homojunction via vacancy migration. ACS Appl. Mater. Interfaces, 14, 21141-21149(2022).

    [105] J. Gong, H. Yu, H. Wei, Y. Zheng, C. Yuan, M. Ma, H. Han, K. Guo, J. Xu, W. Xu. An air-stable two-dimensional perovskite artificial synapse. Semicond. Sci. Technol., 35, 104001(2020).

    [106] M. F. Bear, R. C. Malenka. Synaptic plasticity: LTP and LTD. Curr. Opin. Neurobiol., 4, 389-399(1994).

    [107] T. Masquelier, R. Guyonneau, S. J. Thorpe. Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains. PLoS ONE, 3, e1377(2008).

    [108] T. Masquelier, R. Guyonneau, S. J. Thorpe. Competitive STDP-based spike pattern learning. Neural Comput., 21, 1259-1276(2009).

    [109] L. A. Finelli, S. Haney, M. Bazhenov, M. Stopfer, T. J. Sejnowski. Synaptic learning rules and sparse coding in a model sensory system. PLoS Comput. Biol., 4, e1000062(2008).

    [110] D. O. Hebb. The Organization of Behavior: A Neuropsychological Theory(1949).

    [111] Y. Dan, M.-M. Poo. Spike timing-dependent plasticity of neural circuits. Neuron, 44, 23-30(2004).

    [112] P. C. Harikesh, C.-Y. Yang, D. Tu, J. Y. Gerasimov, A. M. Dar, A. Armada-Moreira, M. Massetti, R. Kroon, D. Bliman, R. Olsson, E. Stavrinidou, M. Berggren, S. Fabiano. Organic electrochemical neurons and synapses with ion mediated spiking. Nat. Commun., 13, 1138(2022).

    [113] J. Zhang, Z. Kourtzi. Learning-dependent plasticity with and without training in the human brain. Proc. Natl. Acad. Sci. USA, 107, 13503-13508(2010).

    [114] S. Song, K. D. Miller, L. F. Abbott. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci., 3, 919-926(2000).

    [115] R. C. Froemke, Y. Dan. Spike-timing-dependent synaptic modification induced by natural spike trains. Nature, 416, 433-438(2002).

    [116] D. Kuzum, S. Yu, H. P. Wong. Synaptic electronics: materials, devices and applications. Nanotechnology, 24, 382001(2013).

    [117] W. Xu, T. L. Nguyen, Y.-T. Kim, C. Wolf, R. Pfattner, J. Lopez, B.-G. Chae, S.-I. Kim, M. Y. Lee, E.-Y. Shin, Y.-Y. Noh, J. H. Oh, H. Hwang, C.-G. Park, H. Y. Woo, T.-W. Lee. Ultrasensitive artificial synapse based on conjugated polyelectrolyte. Nano Energy, 48, 575-581(2018).

    [118] H. Tan, Z. Ni, W. Peng, S. Du, X. Liu, S. Zhao, W. Li, Z. Ye, M. Xu, Y. Xu, X. Pi, D. Yang. Broadband optoelectronic synaptic devices based on silicon nanocrystals for neuromorphic computing. Nano Energy, 52, 422-430(2018).

    [119] P. Lennie. The cost of cortical computation. Curr. Biol., 13, 493-497(2003).

    [120] I.-T. Wang, Y.-C. Lin, Y.-F. Wang, C.-W. Hsu, T.-H. Hou. 3D synaptic architecture with ultralow sub-10 FJ energy per spike for neuromorphic computation. IEEE International Electron Devices Meeting, 28.5.1-28.5.4(2014).

    [121] M. Lee, W. Lee, S. Choi, J.-W. Jo, J. Kim, S. K. Park, Y.-H. Kim. Brain-inspired photonic neuromorphic devices using photodynamic amorphous oxide semiconductors and their persistent photoconductivity. Adv. Mater., 29, 1700951(2017).

    [122] H. Li, T. Chen, P. Liu, S. Hu, Y. Liu, Q. Zhang, P. Lee. A light-stimulated synaptic transistor with synaptic plasticity and memory functions based on InGaZnOx–Al2O3 thin film structure. J. Appl. Phys., 119, 244505(2016).

    [123] S. Choi, S. Jang, J.-H. Moon, J. C. Kim, H. Y. Jeong, P. Jang, K.-J. Lee, G. Wang. A self-rectifying TaOy/nanoporous TaOx memristor synaptic array for learning and energy-efficient neuromorphic systems. NPG Asia Mater., 10, 1097-1106(2018).

    [124] T. Fu, X. Liu, H. Gao, J. E. Ward, X. Liu, B. Yin, Z. Wang, Y. Zhuo, D. J. Walker, J. Joshua Yang, J. Chen, D. R. Lovley, J. Yao. Bioinspired bio-voltage memristors. Nat. Commun., 11, 13(2020).

    [125] X. Feng, Y. Li, L. Wang, S. Chen, Z. G. Yu, W. C. Tan, N. Macadam, G. Hu, L. Huang, L. Chen, X. Gong, D. Chi, T. Hasan, A. V.-Y. Thean, Y.-W. Zhang, K.-W. Ang. A fully printed flexible MoS2 memristive artificial synapse with femtojoule switching energy. Adv. Electron. Mater., 5, 1900740(2019).

    [126] F. Ma, Y. Zhu, Z. Xu, Y. Liu, X. Zheng, S. Ju, Q. Li, Z. Ni, H. Hu, Y. Chai, C. Wu, T. W. Kim, F. Li. Optoelectronic perovskite synapses for neuromorphic computing. Adv. Funct. Mater., 30, 1908901(2020).

    [127] Z. Xin, Y. Tan, T. Chen, E. Iranmanesh, L. Li, K.-C. Chang, S. Zhang, C. Liu, H. Zhou. Visible-light-stimulated synaptic InGaZnO phototransistors enabled by wavelength-tunable perovskite quantum dots. Nano. Adv., 3, 5046-5052(2021).

    [128] Y. Park, M.-K. Kim, J.-S. Lee. 2D layered metal-halide perovskite/oxide semiconductor-based broadband optoelectronic synaptic transistors with long-term visual memory. J. Mater. Chem. C, 9, 1429-1436(2021).

    [129] K. Lee, H. Han, Y. Kim, J. Park, S. Jang, H. Lee, S. W. Lee, H. Kim, Y. Kim, T. Kim, D. Kim, G. Wang, C. Park. Retina-inspired structurally tunable synaptic perovskite nanocones. Adv. Funct. Mater., 31, 2105596(2021).

    [130] J. Lao, W. Xu, C. Jiang, N. Zhong, B. Tian, H. Lin, C. Luo, J. Travas-Sejdic, H. Peng, C.-G. Duan. Artificial synapse based on organic–inorganic hybrid perovskite with electric and optical modulation. Adv. Electron. Mater., 7, 2100291(2021).

    [131] H. Duan, L. Liang, Z. Wu, H. Zhang, L. Huang, H. Cao. IGZO/CsPbBr3-nanoparticles/IGZO neuromorphic phototransistors and their optoelectronic coupling applications. ACS Appl. Mater. Interfaces, 13, 30165-30173(2021).

    [132] Y. Cao, X. Sha, X. Bai, Y. Shao, Y. Gao, Y.-M. Wei, L. Meng, N. Zhou, J. Liu, B. Li, X.-F. Yu, J. Li. Ultralow light-power consuming photonic synapses based on ultrasensitive perovskite/indium-gallium-zinc-oxide heterojunction phototransistors. Adv. Electron. Mater., 8, 2100902(2022).

    [133] X. Yang, Z. Xiong, Y. Chen, Y. Ren, L. Zhou, H. Li, Y. Zhou, F. Pan, S.-T. Han. A self-powered artificial retina perception system for image preprocessing based on photovoltaic devices and memristive arrays. Nano Energy, 78, 105246(2020).

    [134] Y. Sun, L. Qian, D. Xie, Y. Lin, M. Sun, W. Li, L. Ding, T. Ren, T. Palacios. Photoelectric synaptic plasticity realized by 2D perovskite. Adv. Funct. Mater., 29, 1902538(2019).

    [135] Z. Liu, S. Dai, Y. Wang, B. Yang, D. Hao, D. Liu, Y. Zhao, L. Fang, Q. Ou, S. Jin, J. Zhao, J. Huang. Photoresponsive transistors based on lead-free perovskite and carbon nanotubes. Adv. Funct. Mater., 30, 1906335(2020).

    [136] W. He, Y. Fang, H. Yang, X. Wu, L. He, H. Chen, T. Guo. A multi-input light-stimulated synaptic transistor for complex neuromorphic computing. J. Mater. Chem. C, 7, 12523-12531(2019).

    [137] L. Qian, Y. Sun, M. Wu, C. Li, D. Xie, L. Ding, G. Shi. A lead-free two-dimensional perovskite for a high-performance flexible photoconductor and a light-stimulated synaptic device. Nanoscale, 10, 6837-6843(2018).

    [138] B. Pradhan, S. Das, J. Li, F. Chowdhury, J. Cherusseri, D. Pandey, D. Dev, A. Krishnaprasad, E. Barrios, A. Towers, A. Gesquiere, L. Tetard, T. Roy, J. Thomas. Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice. Sci. Adv., 6, eaay5225(2020).

    [139] L. Yang, M. Singh, S.-W. Shen, K.-Y. Chih, S.-W. Liu, C.-I. Wu, C.-W. Chu, H.-W. Lin. Transparent and flexible inorganic perovskite photonic artificial synapses with dual-mode operation. Adv. Funct. Mater., 31, 2008259(2021).

    [140] L. Chua. Memristor-the missing circuit element. IEEE Trans. Circuit Theory, 18, 507-519(1971).

    [141] R. A. John, Y. Demirağ, Y. Shynkarenko, Y. Berezovska, N. Ohannessian, M. Payvand, P. Zeng, M. I. Bodnarchuk, F. Krumeich, G. Kara, I. Shorubalko, M. V. Nair, G. A. Cooke, T. Lippert, G. Indiveri, M. V. Kovalenko. Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing. Nat. Commun., 13, 2074(2022).

    [142] C. Wang, G.-Q. Mao, M. Huang, E. Huang, Z. Zhang, J. Yuan, W. Cheng, K.-H. Xue, X. Wang, X. Miao. HfOx/AlOy superlattice-like memristive synapse. Adv. Sci. Weinheim, 9, 2201446(2022).

    [143] A. Wedig, M. Luebben, D.-Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K. K. Adepalli, B. Yildiz, R. Waser, I. Valov. Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems. Nat. Nanotechnol., 11, 67-74(2016).

    [144] M. D. Pickett, G. Medeiros-Ribeiro, R. S. Williams. A scalable neuristor built with Mott memristors. Nat. Mater., 12, 114-117(2013).

    [145] K. Wen, Y. Fan, G. Wang, L. Jin, X. Li, Z. Li, Y. Zhang, B. Xiong. Aging behavior and precipitate characterization of a high Zn-containing Al-Zn-Mg-Cu alloy with various tempers. Mater. Des., 101, 16-23(2016).

    [146] J. Du, D. Xie, Q. Zhang, H. Zhong, F. Meng, X. Fu, Q. Sun, H. Ni, T. Li, E.-J. Guo, H. Guo, M. He, C. Wang, L. Gu, X. Xu, G. Zhang, G. Yang, K. Jin, C. Ge. A robust neuromorphic vision sensor with optical control of ferroelectric switching. Nano Energy, 89, 106439(2021).

    [147] S. Lan, X. Wang, R. Yu, C. Zhou, M. Wang, X. Cai. Organic synaptic transistors based on a hybrid trapping layer for neuromorphic computing. IEEE Electron Device Lett., 43, 1255-1258(2022).

    [148] G. Feng, J. Jiang, Y. Li, D. Xie, B. Tian, Q. Wan. Flexible vertical photogating transistor network with an ultrashort channel for in-sensor visual nociceptor. Adv. Funct. Mater., 31, 2104327(2021).

    [149] K. Wang, J. Chen, X. Yan. MXene Ti3C2 memristor for neuromorphic behavior and decimal arithmetic operation applications. Nano Energy, 79, 105453(2021).

    [150] Y. Ren, W.-C. Lin, L.-Y. Ting, G. Ding, B. Yang, J.-Q. Yang, H.-H. Chou, S.-T. Han, Y. Zhou. Iridium-based polymer for memristive devices with integrated logic and arithmetic applications. J. Mater. Chem. C, 8, 16845-16857(2020).

    [151] J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. Wright, W. Pernice. Calculating with light using a chip-scale all-optical abacus. Nat. Commun., 8, 1256(2017).

    [152] C. D. Wright, P. Hosseini, J. A. V. Diosdado. Beyond von-Neumann computing with nanoscale phase-change memory devices. Adv. Funct. Mater., 23, 2248-2254(2013).

    [153] J. Wang, J. Wang, J. Zhang, W. Huang, X. Wang, M. Zhang. Ultralow-power synaptic transistors based on Ta2O5/Al2O3 bilayer dielectric for algebraic arithmetic. Adv. Electron. Mater., 8, 2100922(2022).

    [154] Y. Li, R. Ji, P. Zhao, J. Lao, C. Jiang, B. Tian, C. Luo, H. Lin, H. Peng, C.-G. Duan. Transparent optoelectronic synapse based on a cui electrode for arithmetic operation. ACS Appl. Electron. Mater., 4, 1989-1996(2022).

    [155] C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, R. J. Hicken. Arithmetic and biologically-inspired computing using phase-change materials. Adv. Mater., 23, 3408-3413(2011).

    [156] W. Hu, J. Jiang, D. Xie, B. Liu, J. Yang, J. He. Proton–electron-coupled MoS2 synaptic transistors with a natural renewable biopolymer neurotransmitter for brain-inspired neuromorphic learning. J. Mater. Chem. C, 7, 682-691(2019).

    [157] S. Zhao, Z. Ni, H. Tan, Y. Wang, H. Jin, T. Nie, M. Xu, X. Pi, D. Yang. Electroluminescent synaptic devices with logic functions. Nano Energy, 54, 383-389(2018).

    [158] D. Hao, J. Zhang, S. Dai, J. Zhang, J. Huang. Perovskite/organic semiconductor-based photonic synaptic transistor for artificial visual system. ACS Appl. Mater. Interfaces, 12, 39487-39495(2020).

    [159] Y. Wang, Y. Zheng, J. Gao, T. Jin, E. Li, X. Lian, X. Pan, C. Han, H. Chen, W. Chen. Band-tailored van der Waals heterostructure for multilevel memory and artificial synapse. InfoMat, 3, 917-928(2021).

    [160] J. Yu, X. Yang, G. Gao, Y. Xiong, Y. Wang, J. Han, Y. Chen, H. Zhang, Q. Sun, Z. L. Wang. Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure. Sci. Adv., 7, eabd9117(2021).

    [161] G. Pedretti, V. Milo, S. Ambrogio, R. Carboni, S. Bianchi, A. Calderoni, N. Ramaswamy, A. Spinelli, D. Ielmini. Memristive neural network for on-line learning and tracking with brain-inspired spike timing dependent plasticity. Sci. Rep., 7, 5288(2017).

    [162] Z. Yang, A. F. Murray. An artificial early visual model adopting spike-timing-dependent plasticity. Neurocomputing, 69, 1904-1911(2006).

    [163] A. Oliveri, R. Rizzo, A. Chella. An application of spike-timing-dependent plasticity to readout circuit for liquid state machine. International Joint Conference on Neural Networks, 1441-1445(2007).

    [164] T. J. Koickal, L. C. Gouveia, A. Hamilton. A programmable spike-timing based circuit block for reconfigurable neuromorphic computing. Neurocomputing, 72, 3609-3616(2009).

    [165] N. Raeis-Hosseini, Y. Park, J.-S. Lee. Flexible artificial synaptic devices based on collagen from fish protein with spike-timing-dependent plasticity. Adv. Funct. Mater., 28, 1800553(2018).

    [166] B. Linares-Barranco, T. Serrano-Gotarredona. Memristance can explain spike-time-dependent-plasticity in neural synapses. Nat. Préc.(2009).

    [167] X. Yan, Q. Zhao, A. P. Chen, J. Zhao, Z. Zhou, J. Wang, H. Wang, L. Zhang, X. Li, Z. Xiao, K. Wang, C. Qin, G. Wang, Y. Pei, H. Li, D. Ren, J. Chen, Q. Liu. Vacancy-induced synaptic behavior in 2D WS2 nanosheet–based memristor for low-power neuromorphic computing. Small, 15, 1901423(2019).

    [168] J.-Y. Chen, X.-G. Tang, Q.-X. Liu, Y.-P. Jiang, W.-M. Zhong, F. Luo. An artificial synapse based on CsPbI3 thin film. Micromachines Basel, 13, 284(2022).

    [169] L. Zhang, Z. Tang, D. Yao, Z. Fan, S. Hu, Q.-J. Sun, X.-G. Tang, Y.-P. Jiang, X. Guo, M. Huang, G. Zhong, J. Gao. Synaptic behaviors in flexible Au/WOx/Pt/mica memristor for neuromorphic computing system. Mater. Today Phys., 23, 100650(2022).

    [170] J. De Houwer. The propositional approach to associative learning as an alternative for association formation models. Learn. Behav., 37, 1-20(2009).

    [171] J. M. Pearce, M. E. Bouton. Theories of associative learning in animals. Annu. Rev. Psychol., 52, 111-139(2001).

    [172] Y. Pei, Z. Zhou, A. P. Chen, J. Chen, X. Yan. A carbon-based memristor design for associative learning activities and neuromorphic computing. Nanoscale, 12, 13531-13539(2020).

    [173] S. Hu, Y. Liu, Z. Liu, T. Chen, Q. Yu, L. Deng, Y. Yin, S. Hosaka. Synaptic long-term potentiation realized in Pavlov’s dog model based on a NiOx-based memristor. J. Appl. Phys., 116, 214502(2014).

    [174] M. Ziegler, R. Soni, T. Patelczyk, M. Ignatov, T. Bartsch, P. Meuffels, H. Kohlstedt. An electronic version of Pavlov’s dog. Adv. Funct. Mater., 22, 2744-2749(2012).

    [175] J. Zhang, Y. Lu, S. Dai, R. Wang, D. Hao, S. Zhang, L. Xiong, J. Huang. Retina-inspired organic heterojunction-based optoelectronic synapses for artificial visual systems. Research Washington DC U.S. 2021, 7131895(2021).

    [176] F. Yu, L. Q. Zhu, H. Xiao, W. T. Gao, Y. B. Guo. Restickable oxide neuromorphic transistors with spike-timing-dependent plasticity and Pavlovian associative learning activities. Adv. Funct. Mater., 28, 1804025(2018).

    [177] Y. Chen, W. Qiu, X. Wang, W. Liu, J. Wang, G. Dai, Y. Yuan, Y. Gao, J. Sun. Solar-blind SnO2 nanowire photo-synapses for associative learning and coincidence detection. Nano Energy, 62, 393-400(2019).

    [178] P. Hökkä, K. Vähäsantanen, S. Paloniemi. Emotions in learning at work: a literature review. Vocations Learn., 13, 1-25(2020).

    [179] B. Kort, R. Reilly, R. W. Picard. An affective model of interplay between emotions and learning: reengineering educational pedagogy-building a learning companion. Proceedings IEEE International Conference on Advanced Learning Technologies, 43-46(2001).

    [180] X. Zhou, J. Guo, R. Bie. Deep learning based affective model for speech emotion recognition. International IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), 841-846(2016).

    [181] Y. Wang, W. Huang, Z. Zhang, L. Fan, Q. Huang, J. Wang, Y. Zhang, M. Zhang. Ultralow-power flexible transparent carbon nanotube synaptic transistors for emotional memory. Nanoscale, 13, 11360-11369(2021).

    [182] J. Zhang, Q. Shi, R. Wang, X. Zhang, L. Li, J. Zhang, L. Tian, L. Xiong, J. Huang. Spectrum-dependent photonic synapses based on 2D imine polymers for power-efficient neuromorphic computing. InfoMat, 3, 904-916(2021).

    [183] L. Wang, H. Zou. A new emotion model of associative memory neural network based on memristor. Neurocomputing, 410, 83-92(2020).

    [184] L. Huang, L. Wu, Q. Sun, C. Jin, J. Wang, S. Fu, Z. Wu, X. Liu, Z. Hu, J. Zhang, J. Sun, X. Zhu, Y. Zhu. All in one: a versatile n-perovskite/p-spiro-meotad p–n heterojunction diode as a photovoltaic cell, photodetector, and memristive photosynapse. J. Phys. Chem. Lett., 12, 12098-12106(2021).

    [185] J. Xue, Z. Zhu, X. Xu, Y. Gu, S. Wang, L. Xu, Y. Zou, J. Song, H. Zeng, Q. Chen. Narrowband perovskite photodetector-based image array for potential application in artificial vision. Nano Lett., 18, 7628-7634(2018).

    [186] L. Gu, S. Poddar, Y. Lin, Z. Long, D. Zhang, Q. Zhang, L. Shu, X. Qiu, M. Kam, A. Javey, Z. Fan. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature, 581, 278-282(2020).

    [187] J. X. Chen. The evolution of computing: AlphaGo. Comput. Sci. Eng., 18, 4-7(2016).

    [188] Z. Li, C. Zhu, Y.-L. Gao, Z.-K. Wang, J. Wang. AlphaGo policy network: a DCNN accelerator on FPGA. IEEE Access, 8, 203039-203047(2020).

    [189] F. Li, Y. Du. From AlphaGo to power system AI: what engineers can learn from solving the most complex board game. IEEE Power Energy Mag., 16, 76-84(2018).

    [190] G. Wang, R. Wang, W. Kong, J. Zhang. Simulation of retinal ganglion cell response using fast independent component analysis. Cogn. Neurodyn., 12, 615-624(2018).

    [191] F. Zhou, Z. Zhou, J. Chen, T. H. Choy, J. Wang, N. Zhang, Z. Lin, S. Yu, J. Kang, H.-S. P. Wong, Y. Chai. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol., 14, 776-782(2019).

    Xitong Hong, Xingqiang Liu, Lei Liao, Xuming Zou. Review on metal halide perovskite-based optoelectronic synapses[J]. Photonics Research, 2023, 11(5): 787
    Download Citation