• Acta Optica Sinica
  • Vol. 35, Issue 12, 1229001 (2015)
Li Xingcai1、2、*, Hu Tianli1, and Liu Yanjun1、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/aos201535.1229001 Cite this Article Set citation alerts
    Li Xingcai, Hu Tianli, Liu Yanjun. Electromagnetic Scattering by Non-uniformly Charged Sand[J]. Acta Optica Sinica, 2015, 35(12): 1229001 Copy Citation Text show less
    References

    [1] E Williams, N Nathou, E Hicks, et al.. The electrification of dust-lofting gust fronts‘( haboobs’) in the Sahel[J]. Atmospheric Research, 2009, 91(2-4): 292-298.

    [2] N Huang, X J Zheng. A laboratory test of the electrification phenomenon in wind-blown sand flux[J]. Chinese Science Bulletin, 2001, 46(5): 417-420.

    [3] Y H Zhou, Q S He, X J Zheng. Attenuation of electromagnetic wave propagation in sandstorms incorporating charged sand particles[J]. The European Physical Journal E, 2005, 17: 181-187.

    [4] L Xie, X Li, X Zheng. Attenuation of an electromagnetic wave by charged dust particles in a sandstorm[J]. Applied Optics, 2010, 49(35): 6756-6761.

    [5] Li Xingcai , Zhang Beidou. The electromagnetic scattering of the charged inhomogeneous sand particle[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 119: 150-154.

    [6] Li Xingcai, Zhang Beidou. An equivalent solution for the electromagnetic scattering of multilayer particle[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 129: 236-240.

    [7] B Zhang, X Li. Electromagnetic scattering by a partially charged multilayered sphere[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 148: 228-232.

    [8] X Li, X Min, D Liu. Rayleigh approximation for the scattering of small partially charged sand particles[J]. Journal Opt Soc Am A, 2014, 31(7): 1495-501.

    [9] Li Xingcai, Liu Dandan , Min Xing. The electric field in sandstorm can strongly affect the sand s scattering properties[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 149: 103-107.

    [10] Min Xing, Li Xingcai, Li Xinwan, et al.. Effects of charged sandstorm on electromagnetic wave propagation[J]. Acta Optica Sinica, 2015, 35(1): 0129001.

    [11] S P Kanagy, C J Mann. Electrical properties of eaolian sand and silt[J]. Earth-Science Review, 1994, 36: 181-204.

    [12] X J Zheng. Electrification of wind-blown sand: recent advances and key issues[J]. Eur Phys J E, 2013, 36: 138.

    [13] Xiaojing Zheng, Rui Zhang, Haojie Huang. Theoretical modeling of relative humidity on contact electrification of sand particles[J]. Scientific Reports, 2014, 4: 4399.

    [14] Lu Luyi, Gu Zhaolin, Luo Xilian, et al.. An electrostatic dynamic model for wind-blown sand system[J]. Acta Physica Sinica, 2008, 57 (11): 6939-6945.

    [15] Z Gu, W Wei, J Su, et al.. The role of water content in tribo-electric charging of wind-blown sand[J]. Scientific Reports, 2013, 3: 1337.

    [16] L Xie, G Li, N Bao, et al.. Contact electrification by collision of homogenous particles[J]. Journal of Applied Physics, 2013, 113(18): 184908.

    [17] H T Baytekin, A Z Patashinski, M Branicki, et al.. The mosaic of surface charge in contact electrification[J]. Science, 2011, 333(6040): 308-312.

    [18] Bu Yichuan, Zhao Yongkai, Chen Zhengyan, et al.. Research on real-time aerosol particle shape identification based on scattered light detection[J]. Chinese J Lasers, 2015, 42(4): 0413003.

    [19] Chen Linghong, Jiang Yiqi, Sun Yangyang, et al.. Analysis of absorption and scattering properties of water host haze droplet with insoluble solid inclusion[J]. Chinese J Lasers, 2015, 42(3): 0308001.

    [20] Liu Cong, Su Lin, Zhang Chaoyang, et al.. Comparative analysis of vertical distribution of aerosols by using spaceborne Lidar[J]. Chinese J Lasers, 2015, 42(4): 0413001.

    Li Xingcai, Hu Tianli, Liu Yanjun. Electromagnetic Scattering by Non-uniformly Charged Sand[J]. Acta Optica Sinica, 2015, 35(12): 1229001
    Download Citation