• High Power Laser Science and Engineering
  • Vol. 7, Issue 3, 03000e42 (2019)
Issa Tamer1、2、†, Sebastian Keppler1、2, Jörg Körner2, Marco Hornung1、2, Marco Hellwing2, Frank Schorcht1, Joachim Hein1、2, and Malte C. Kaluza1、2
Author Affiliations
  • 1Helmholtz-Institute Jena, Fröbelstieg 3, 07743 Jena, Germany
  • 2Friedrich-Schiller-University Jena, Max-Wien Platz 1, 07743 Jena, Germany
  • show less
    DOI: 10.1017/hpl.2019.32 Cite this Article Set citation alerts
    Issa Tamer, Sebastian Keppler, Jörg Körner, Marco Hornung, Marco Hellwing, Frank Schorcht, Joachim Hein, Malte C. Kaluza. Modeling of the 3D spatio-temporal thermal profile of joule-class -based laser amplifiers[J]. High Power Laser Science and Engineering, 2019, 7(3): 03000e42 Copy Citation Text show less

    Abstract

    Thermal profile modification of an active material in a laser amplifier via optical pumping results in a change in the material’s refractive index, and causes thermal expansion and stress, eventually leading to spatial phase aberrations, or even permanent material damage. For this purpose, knowledge of the 3D spatio-temporal thermal profile, which can currently only be retrieved via numerical simulations, is critical for joule-class laser amplifiers to reveal potentially dangerous thermal features within the pumped active materials. In this investigation, a detailed, spatio-temporal numerical simulation was constructed and tested for accuracy against surface thermal measurements of various end-pumped $\text{Yb}^{3+}$-doped laser-active materials. The measurements and simulations show an excellent agreement and the model was successfully applied to a joule-class $\text{Yb}^{3+}$-based amplifier currently operating in the POLARIS laser system at the Friedrich-Schiller-University and Helmholtz-Institute Jena in Germany.
    $$\begin{eqnarray}\displaystyle & & \displaystyle \unicode[STIX]{x1D70C}C_{p}\frac{\unicode[STIX]{x2202}T(x,y,z,t)}{\unicode[STIX]{x2202}t}-K_{\text{th}}\unicode[STIX]{x1D6FB}^{2}T(x,y,z,t)\nonumber\\ \displaystyle & & \displaystyle \quad =\unicode[STIX]{x1D702}_{h}\unicode[STIX]{x1D6FC}I(x,y,t)A(z,t),\end{eqnarray}$$(1)

    View in Article

    $$\begin{eqnarray}K_{\text{th}}=B\cdot \sqrt{\frac{K_{\text{th},0}}{d}}\cdot \arctan \left(\frac{\sqrt{K_{\text{th},0}\cdot d}}{B}\right),\end{eqnarray}$$(2)

    View in Article

    $$\begin{eqnarray}\displaystyle & \displaystyle \frac{\unicode[STIX]{x2202}I(z,t)}{\unicode[STIX]{x2202}z}=-N_{\text{dot}}\cdot \unicode[STIX]{x1D70E}_{a}\cdot \left[1-\frac{\unicode[STIX]{x1D6FD}(z,t)}{\unicode[STIX]{x1D6FD}_{\text{eq}}}\right]\cdot I(z,t), & \displaystyle\end{eqnarray}$$(3)

    View in Article

    $$\begin{eqnarray}\displaystyle & \displaystyle \frac{\unicode[STIX]{x2202}\unicode[STIX]{x1D6FD}(z,t)}{\unicode[STIX]{x2202}t}=I(z,t)\cdot \frac{\unicode[STIX]{x1D706}\cdot \unicode[STIX]{x1D70E}_{a}}{h\cdot c\cdot \unicode[STIX]{x1D6FD}_{\text{eq}}}\cdot \left[1-\frac{\unicode[STIX]{x1D6FD}(z,t)}{\unicode[STIX]{x1D6FD}_{\text{eq}}}\right]-\frac{\unicode[STIX]{x1D6FD}_{\text{eq}}}{\unicode[STIX]{x1D70F}_{f}}. & \displaystyle\end{eqnarray}$$(4)

    View in Article

    $$\begin{eqnarray}\frac{\unicode[STIX]{x2202}I(z)}{\unicode[STIX]{x2202}z}=-\unicode[STIX]{x1D6FC}I(z)\end{eqnarray}$$(5)

    View in Article

    $$\begin{eqnarray}\frac{\unicode[STIX]{x2202}I(z)}{\unicode[STIX]{x2202}z}=-\frac{\unicode[STIX]{x1D6FC}}{1+\frac{I(z)}{I_{\text{sat}}}}I(z).\end{eqnarray}$$(6)

    View in Article

    $$\begin{eqnarray}\displaystyle & & \displaystyle I(x,y,z,t)\nonumber\\ \displaystyle & & \displaystyle \quad =\mathop{\sum }_{i=1}^{40}E_{i}\cdot \exp \left\{-\left[\left(\frac{\cos \unicode[STIX]{x1D703}_{i}\cdot X_{i}+\sin \unicode[STIX]{x1D703}_{i}\cdot Y_{i}}{\unicode[STIX]{x1D714}_{\max ,i}}\right)^{2}\right.\right.\nonumber\\ \displaystyle & & \displaystyle \qquad +\,\left.\left.\left(\frac{-\sin \unicode[STIX]{x1D703}_{i}\cdot X_{i}+\cos \unicode[STIX]{x1D703}_{i}\cdot Y_{i}}{\unicode[STIX]{x1D714}_{\min ,i}}\right)^{2}\right]\right\}\nonumber\\ \displaystyle & & \displaystyle \qquad \cdot \,A_{i}(z)\cdot \text{rect}\left(\frac{t}{\unicode[STIX]{x1D70F}_{\text{pump}}}\right),\end{eqnarray}$$(7)

    View in Article

    Issa Tamer, Sebastian Keppler, Jörg Körner, Marco Hornung, Marco Hellwing, Frank Schorcht, Joachim Hein, Malte C. Kaluza. Modeling of the 3D spatio-temporal thermal profile of joule-class -based laser amplifiers[J]. High Power Laser Science and Engineering, 2019, 7(3): 03000e42
    Download Citation