• Infrared and Laser Engineering
  • Vol. 45, Issue 1, 105002 (2016)
Ding Xin1、2, Zhang Wei1、2, Liu Junjie3, Sheng Quan1、2, Li Bin1、2, Liu Jian1、2, Jiang Pengbo1、2, Sun Bing1、2, Zhao Cen1、2, and Yao Jianquan1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/irla201645.0105002 Cite this Article
    Ding Xin, Zhang Wei, Liu Junjie, Sheng Quan, Li Bin, Liu Jian, Jiang Pengbo, Sun Bing, Zhao Cen, Yao Jianquan. High efficiency actively Q-switched Nd:YVO4 self-Raman laser under 880 nm in-band pumping[J]. Infrared and Laser Engineering, 2016, 45(1): 105002 Copy Citation Text show less
    References

    [1] Kores C C, Jakutis-Neto J, Geskus D, et al. Diode-side-pumped continuous wave Nd3+:YVO4 self-Raman laser at 1 176 nm[J]. Optics Letters, 2015, 40(15): 3524-3527.

    [2] Li Shutao, Dong Yuan, Jin Guangyong, et al. Normalized theoretical analysis of continuous-wave intracavity frequency-doubled Raman laser[J]. Infrared and Laser Engineering, 2015, 44(1): 71-75. (in Chinese)

    [3] Zhang Fang, Wang Zhengping, Xu Xinguang. Anisotropy of stimulated Raman scattering in SrWO4 crystal[J]. Optics and Precision Engineering, 2014, 22(1): 39-43. (in Chinese)

    [4] Kaminskii A A, Ueda K, Eichler H J, et al. Tetragonal vanadates YVO4 and GdVO4-new efficient χ(3)-materials for Raman lasers[J]. Optics Communications, 2001, 194(1): 201-206.

    [5] Chen Y F. Efficient 1521-nm Nd:GdVO4 raman laser[J]. Optics Letters, 2004, 29(22): 2632-2634.

    [6] Yu H, Li Z, Lee A J, et al. A continuous wave SrMoO4 Raman laser[J]. Optics Letters, 2011, 36(4): 579-581.

    [7] Li Long, Shi Peng, Liu Xiaofang, et al. Thermal effect of YVO4-Nd:YVO4 composite laser crystals[J]. Optics and Precision Engineering, 2006, 14(5): 786-791. (in Chinese)

    [8] Wang Yang, Duanmu Qingduo. Efficient cw Nd:LuVO4-BiBO deep-bluelaser[J]. Infrared and Laser Engineering, 2015, 44(3): 884-887. (in Chinese)

    [9] Cui Li, Hu Wenghua, Zhang Hengli, et al. Nd:GdVO4 laser with hybrid resonator at 1.34 μm[J]. Infrared and Laser Engineering, 2014, 43(8): 2404-2406. (in Chinese)

    [10] Shi Peng, Chen Wen, Li Long, et al. Influence of laser distribution on thermal effect of Nd:YVO4 crystal[J]. Optics and Precision Engineering, 2008, 16(2): 197-201. (in Chinese)

    [11] Dekker P, Pask H M, Spence D J, et al. Continuous-wave, intracavity doubled, self-Raman laser operation in Nd: GdVO4 at 586.5 nm[J]. Optics Express, 2007, 15(11): 7038-7046.

    [12] Zhu H, Duan Y, Zhang G, et al. Efficient second harmonic generation of double-end diffusion-bonded Nd:YVO4 self-Raman laser producing 7.9 W yellow light[J]. Optics Express, 2009, 17(24): 21544-21550.

    [13] Ding X, Fan C, Sheng Q, et al. 5.2-W high-repetition-rate eye-safe laser at 1525 nm generated by Nd:YVO4-YVO4 stimulated Raman conversion[J]. Optics Express, 2014, 22(23): 29111-29116.

    [14] Jiang W, Zhu S, Chen X, et al. Compact passively Q-switched Raman laser at 1176nm and yellow laser at 588 nm using Nd3+:YG/Cr4+:YAG composite crystal[J]. Applied Optics, 2014, 53(7): 1328-1332.

    CLP Journals

    [1] Wang Cong, Lv Dongxiang. Theoretical analysis on crystalline Raman amplifier[J]. Infrared and Laser Engineering, 2018, 47(11): 1105007

    Ding Xin, Zhang Wei, Liu Junjie, Sheng Quan, Li Bin, Liu Jian, Jiang Pengbo, Sun Bing, Zhao Cen, Yao Jianquan. High efficiency actively Q-switched Nd:YVO4 self-Raman laser under 880 nm in-band pumping[J]. Infrared and Laser Engineering, 2016, 45(1): 105002
    Download Citation