• Acta Optica Sinica
  • Vol. 41, Issue 14, 1428001 (2021)
Qingpeng Zeng1, Fangrong Hu1、*, Yuan Zhou2, Yingchang Zou2, and Zhiyou Wang2
Author Affiliations
  • 1School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
  • 2Hunan Engineering Technology Research Center of Optoelectronic Health Detection, School of Electronic and Electrical Engineering, Changsha University, Changsha, Hunan 410022, China
  • show less
    DOI: 10.3788/AOS202141.1428001 Cite this Article Set citation alerts
    Qingpeng Zeng, Fangrong Hu, Yuan Zhou, Yingchang Zou, Zhiyou Wang. High Q-Value Terahertz Metamaterial Sensor Based on Double Ellipse Structure[J]. Acta Optica Sinica, 2021, 41(14): 1428001 Copy Citation Text show less
    References

    [1] Li H, Yu J, Chen Z. Broadband tunable terahertz absorber based on hybrid graphene-vanadium dioxide metamaterials[J]. Chinese Journal of Lasers, 47, 0903001(2020).

    [2] Li D M, Yuan S, Yang R C et al. Dynamical optical-controlled multi-state THz metamaterial absorber[J]. Acta Optica Sinica, 40, 0816001(2020).

    [3] Wu D M, Fang N, Sun C et al. Terahertz plasmonic high pass filter[J]. Applied Physics Letters, 83, 201-203(2003).

    [4] Sun Y F, Tao C B, Sun J D et al. Filter-enhanced high-sensitivity HEMT terahertz detector at room temperature[J]. Acta Optica Sinica, 38, 0304001(2018).

    [5] Lee S, Lee K E, Lee W J et al. Two-terminal graphene oxide devices for electrical modulation of broadband terahertz waves[J]. Advanced Optical Materials, 4, 548-554(2016).

    [6] Ren L, Pint C L, Arikawa T et al. Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks[J]. Nano Letters, 12, 787-790(2012).

    [7] Wang W T, Liu J J, Li X J et al. Direct fabrication of terahertz polarizer and filter by laser inducing and non-electrolytic plating with copper[J]. Acta Optica Sinica, 32, 1231002(2012).

    [8] Ahmed K, Ahmed F, Roy S et al. Refractive index-based blood components sensing in terahertz spectrum[J]. IEEE Sensors Journal, 19, 3368-3375(2019).

    [9] Keshavarz A, Vafapour Z. Thermo-optical applications of a novel terahertz semiconductor metamaterial design[J]. Journal of the Optical Society of America B, 36, 35-41(2018).

    [10] Cen C L, Yi Z, Zhang G F et al. Theoretical design of a triple-band perfect metamaterial absorber in the THz frequency range[J]. Results in Physics, 14, 102463(2019).

    [11] He X Y, Liu F, Lin F T et al. Investigation of terahertz all-dielectric metamaterials[J]. Optics Express, 27, 13831-13844(2019).

    [12] Smith D R, Padilla W J, Vier D C et al. Composite medium with simultaneously negative permeability and permittivity[J]. Physical Review Letters, 84, 4184-4187(2000).

    [13] Pendry J B, Holden A J, Robbins D J et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 47, 2075-2084(1999).

    [14] Pendry J B, Holden A J, Stewart W J et al. Extremely low frequency plasmons in metallic mesostructures[J]. Physical Review Letters, 76, 4773-4776(1996).

    [15] Wu X J, Pan X C, Quan B G et al. Self-referenced sensing based on terahertz metamaterial for aqueous solutions[J]. Applied Physics Letters, 102, 151109(2013).

    [16] Xu W D, Xie L J, Zhu J F et al. Gold nanoparticle-based terahertz metamaterial sensors: mechanisms and applications[J]. ACS Photonics, 3, 2308-2314(2016).

    [17] Wang W, Yan F P, Tan S Y et al. Ultrasensitive terahertz metamaterial sensor based on vertical split ring resonators[J]. Photonics Research, 5, 571-577(2017).

    [18] Yang Y P, Xu D Q, Zhang W L. High-sensitivity and label-free identification of a transgenic genome using a terahertz meta-biosensor[J]. Optics Express, 26, 31589-31598(2018).

    [19] Zhao X, Lin Z Q, Wang Y X et al. Label-free self-referenced sensing of living cells by terahertz metamaterial-based reflection spectroscopy[J]. Biomedical Optics Express, 10, 1196-1206(2019).

    [20] Ma A C, Zhong R B, Wu Z H et al. Ultrasensitive THz sensor based on centrosymmetric F-shaped metamaterial resonators[J]. Frontiers in Physics, 8, 584639(2020).

    [21] Wang Z, Geng Z, Fang W. Exploring performance of THz metamaterial biosensor based on flexible thin-film[J]. Optics Express, 28, 26370-26384(2020).

    [22] Yang S Y, Tang C C, Liu Z et al. Simultaneous excitation of extremely high-Q-factor trapped and octupolar modes in terahertz metamaterials[J]. Optics Express, 25, 15938-15946(2017).

    [23] Hu F R, Wang L, Quan B G et al. Design of a polarization insensitive multiband terahertz metamaterial absorber[J]. Journal of Physics D: Applied Physics, 46, 195103(2013).

    [24] KojimaS, KitaharaH, NishizawaS, et al., 2005, 744/745/746/747: 243- 246.

    [25] Saadeldin A S. Hameed M F O, Elkaramany EMA, et al. Highly sensitive terahertz metamaterial sensor[J]. IEEE Sensors Journal, 19, 7993-7999(2019).

    [26] Al-Naib I. Biomedical sensing with conductively coupled terahertz metamaterial resonators[J]. IEEE Journal of Selected Topics in Quantum Electronics, 23, 1-5(2017).

    [27] Chen J, Peng C, Qi S B et al. Photonic microcavity-enhanced magnetic plasmon resonance of metamaterials for sensing applications[J]. IEEE Photonics Technology Letters, 31, 113-116(2019).

    [28] Yesilkoy F, Arvelo E R, Jahani Y et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces[J]. Nature Photonics, 13, 390-396(2019).

    [29] Friedrich H, Wintgen D. Interfering resonances and bound states in the continuum[J]. Physical Review A, General Physics, 32, 3231-3242(1985).

    [30] Koshelev K, Lepeshov S, Liu M K et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum[J]. Physical Review Letters, 121, 193903(2018).

    Qingpeng Zeng, Fangrong Hu, Yuan Zhou, Yingchang Zou, Zhiyou Wang. High Q-Value Terahertz Metamaterial Sensor Based on Double Ellipse Structure[J]. Acta Optica Sinica, 2021, 41(14): 1428001
    Download Citation