• Advanced Photonics
  • Vol. 5, Issue 4, 046003 (2023)
Liu Yang1、†, Zhanke Zhou1, Hao Wu1, Hongliang Dang1, Yuxin Yang1, Jiaxin Gao1, Xin Guo1、2, Pan Wang1、2, and Limin Tong1、2、3、*
Author Affiliations
  • 1Zhejiang University, College of Optical Science and Engineering, New Cornerstone Science Laboratory, Interdisciplinary Center for Quantum Information, Hangzhou, China
  • 2Jiaxing Institute of Zhejiang University, Intelligent Optics and Photonics Research Center, Jiaxing, China
  • 3Shanxi University, Collaborative Innovation Center of Extreme Optics, Taiyuan, China
  • show less
    DOI: 10.1117/1.AP.5.4.046003 Cite this Article Set citation alerts
    Liu Yang, Zhanke Zhou, Hao Wu, Hongliang Dang, Yuxin Yang, Jiaxin Gao, Xin Guo, Pan Wang, Limin Tong. Generating a sub-nanometer-confined optical field in a nanoslit waveguiding mode[J]. Advanced Photonics, 2023, 5(4): 046003 Copy Citation Text show less
    References

    [1] V. R. Almeida et al. Guiding and confining light in void nanostructure. Opt. Lett., 29, 1209-1211(2004).

    [2] J. T. Robinson et al. Ultrasmall mode volumes in dielectric optical microcavities. Phys. Rev. Lett., 95, 143901(2005).

    [3] C. Caër et al. Extreme optical confinement in a slotted photonic crystal waveguide. Appl. Phys. Lett., 105, 121111(2014).

    [4] R. M. Bakker et al. Magnetic and electric hotspots with silicon nanodimers. Nano Lett., 15, 2137-2142(2015).

    [5] S. Hu, S. M. Weiss. Design of photonic crystal cavities for extreme light concentration. ACS Photonics, 3, 1647-1653(2016).

    [6] D. N. Basov et al. Polaritons in van der Waals materials. Science, 354, aag1992(2016).

    [7] H. Choi, M. Heuck, D. Englund. Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities. Phys. Rev. Lett., 118, 223605(2017).

    [8] S. Hu et al. Experimental realization of deep-subwavelength confinement in dielectric optical resonators. Sci. Adv., 4, eaat2355(2018).

    [9] J. J. Baumberg et al. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater., 18, 668-678(2019).

    [10] M. Albrechtsen et al. Nanometer-scale photon confinement in topology-optimized dielectric cavities. Nat. Commun., 13, 6281(2022).

    [11] H. Ling, J. B. Khurgin, A. R. Davoyan. Atomic-void van der Waals channel waveguides. Nano Lett., 22, 6254-6261(2022).

    [12] K. P. Arnold et al. Photonic crystals with split ring unit cells for subwavelength light confinement. Opt. Lett., 47, 661-664(2022).

    [13] Q. Quan, I. Bulu, M. Lončar. Broadband waveguide QED system on a chip. Phys. Rev. A, 80, 011810(2009).

    [14] F. Benz et al. Single-molecule optomechanics in ‘picocavities. Science, 354, 726-729(2016).

    [15] L. Sortino et al. Bright single photon emitters with enhanced quantum efficiency in a two-dimensional semiconductor coupled with dielectric nano-antennas. Nat. Commun., 12, 6063(2021).

    [16] P. G. Zotev et al. Transition metal dichalcogenide dimer nanoantennas for tailored light-matter interactions. ACS Nano, 16, 6493-6505(2022).

    [17] Y. Meng et al. Bright single-nanocrystal upconversion at sub 0.5 W cm-2 irradiance via coupling to single nanocavity mode. Nat. Photonics, 17, 73-81(2022).

    [18] E. Betzig, J. K. Trautman. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science, 257, 189-195(1992).

    [19] N. Fang et al. Sub-diffraction-limited optical imaging with a silver superlens. Science, 308, 534-537(2005).

    [20] L. Wang, X. F. Xu. High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging. Appl. Phys. Lett., 90, 261105(2007).

    [21] B. Yang et al. Sub-nanometre resolution in single-molecule photoluminescence imaging. Nat. Photonics, 14, 693-699(2020).

    [22] M. Born, E. Wolf, A. B. Bhatia. Principles of Optics(2019).

    [23] P. Wang et al. Molecular plasmonics with metamaterials. Chem. Rev., 122, 15031-15081(2022).

    [24] W. Li et al. Bright optical eigenmode of 1 nm3 mode volume. Phys. Rev. Lett., 126, 257401(2021).

    [25] J. J. Baumberg. Picocavities: a primer. Nano Lett., 22, 5859-5865(2022).

    [26] R. F. Oulton et al. Plasmon lasers at deep subwavelength scale. Nature, 461, 629-632(2009).

    [27] R. F. Oulton et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics, 2, 496-500(2008).

    [28] R. Zhang et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature, 498, 82-86(2013).

    [29] M. E. Stewart et al. Nanostructured plasmonic sensors. Chem. Rev., 108, 494-521(2008).

    [30] H. Wu et al. Plasmonic nanolasers: pursuing extreme lasing conditions on nanoscale. Adv. Opt. Mater., 7, 1900334(2019).

    [31] F. Wang, Y. R. Shen. General properties of local plasmons in metal nanostructures. Phys. Rev. Lett., 97, 206806(2006).

    [32] I. Bialynicki-Birula, Z. Bialynicka-Birula. Uncertainty relation for photons. Phys. Rev. Lett., 108, 140401(2012).

    [33] I. Bialynicki-Birula, Z. Bialynicka-Birula. Heisenberg uncertainty relations for photons. Phys. Rev. A, 86, 022118(2012).

    [34] H. Wu et al. Photonic nanolaser with extreme optical field confinement. Phys. Rev. Lett., 129, 013902(2022).

    [35] L. M. Tong et al. Photonic nanowires directly drawn from bulk glasses. Opt. Express, 14, 82-87(2006).

    [36] T. G. Tiecke et al. Efficient fiber-optical interface for nanophotonic devices. Optica, 2, 70-75(2015).

    [37] R. E. Treharne et al. Optical design and fabrication of fully sputtered CdTe/CdS solar cells. J. Phys.: Conf. Ser., 286, 012038(2011).

    [38] R. Yan, D. Gargas, P. D. Yang. Nanowire photonics. Nat. Photonics, 3, 569-576(2009).

    [39] L. N. Quan et al. Nanowires for photonics. Chem. Rev., 119, 9153-9169(2019).

    [40] X. Guo, Y. B. Ying, L. M. Tong. Photonic nanowires: from subwavelength waveguides to optical sensors. Acc. Chem. Res., 47, 656-666(2014).

    [41] R. J. Black, L. Gagnon. Optical Waveguide Modes: Polarization, Coupling and Symmetry(2010).

    [42] F. Salvat-Pujol, J. S. Villarrubia. Conventional vs. model-based measurement of patterned line widths from scanning electron microscopy profiles. Ultramicroscopy, 206, 112819(2019).

    [43] C. G. Xin et al. Self-phase modulation in single CdTe nanowires. Opt. Express, 27, 31800-31809(2019).

    [44] D. W. Langer. Temperature and pressure dependence of the index of refraction of CdS. J. Appl. Phys., 37, 3530-3532(1966).

    [45] K. J. Savage et al. Revealing the quantum regime in tunnelling plasmonics. Nature, 491, 574-577(2012).

    [46] G. Toscano et al. Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics. Nat. Commun., 6, 7132(2015).

    [47] J. Khurgin et al. Landau damping and limit to field confinement and enhancement in plasmonic dimers. ACS Photonics, 4, 2871-2880(2017).

    [48] Y. Yang et al. A general theoretical and experimental framework for nanoscale electromagnetism. Nature, 576, 248-252(2019).

    [49] D. Minoli. Nanotechnology Applications to Telecommunications and Networking(2005).

    [50] E. D. Palik. Handbook of Optical Constants of Solids II(1991).

    [51] Z. X. Shi et al. Miniature optical correlator in a single-nanowire Sagnac loop. ACS Photonics, 7, 3264-3269(2020).

    [52] A. Sugimura et al. Wavelength dispersion characteristics of single-mode fibers in low-loss region. IEEE J. Quantum Electron., 16, 215-225(1980).

    [53] J. Weiner et al. Experiments and theory in cold and ultracold collisions. Rev. Mod. Phys., 71, 1-85(1999).

    [54] L. M. Tong. Micro/nanofibre optical sensors: challenges and prospects. Sensors, 18, 903(2018).

    [55] G. Y. Zhai, L. M. Tong. Roughness-induced radiation losses in optical micro or nanofibers. Opt. Express, 15, 13805-13816(2007).

    [56] A. V. Kovalenko, V. N. Kurashov, A. V. Kisil. Radiation losses in optical nanofibers with random rough surface. Opt. Express, 16, 5797-5806(2008).

    Liu Yang, Zhanke Zhou, Hao Wu, Hongliang Dang, Yuxin Yang, Jiaxin Gao, Xin Guo, Pan Wang, Limin Tong. Generating a sub-nanometer-confined optical field in a nanoslit waveguiding mode[J]. Advanced Photonics, 2023, 5(4): 046003
    Download Citation