• High Power Laser and Particle Beams
  • Vol. 34, Issue 12, 122001 (2022)
Tiankui Zhang1, Lianqiang Shan1, Minghai Yu1, Feng Lu1, Weimin Zhou1、*, Chao Tian1, Fang Tan1, Yonghong Yan1, Feng Zhang1, Zongqiang Yuan1, Qiuyue Xu1, Weiwu Wang1, Zhigang Deng1, Jian Teng1, Dongxiao Liu1, Lei Yang1, Wei Fan1, Yue Yang1, Kainan Zhou1, Jingqin Su1, Yuchi Wu1, Yongkun Ding2, and Yuqiu Gu1、*
Author Affiliations
  • 1Laser Fusion Research Center, CAEP, P. O. Box 919-986-6, Mianyang 621900, China
  • 2Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
  • show less
    DOI: 10.11884/HPLPB202234.220186 Cite this Article
    Tiankui Zhang, Lianqiang Shan, Minghai Yu, Feng Lu, Weimin Zhou, Chao Tian, Fang Tan, Yonghong Yan, Feng Zhang, Zongqiang Yuan, Qiuyue Xu, Weiwu Wang, Zhigang Deng, Jian Teng, Dongxiao Liu, Lei Yang, Wei Fan, Yue Yang, Kainan Zhou, Jingqin Su, Yuchi Wu, Yongkun Ding, Yuqiu Gu. Source-coded radiography technique with high spatial-resolution for X-ray source driven by ps-laser[J]. High Power Laser and Particle Beams, 2022, 34(12): 122001 Copy Citation Text show less
    References

    [1] Drake R P. Highenergydensity physics: fundamentals, inertial fusion, experimental astrophysics[M]. Sun Chengwei, trans. Beijing: National Defense Industry Press, 2013: 117

    [2] Development Strategy Research Preparation Group of Nuclear Physics Plasma Physics. Nuclear physics plasma physics: discipline frontier development strategy[M]. Beijing: Science Press, 2017: 323

    [3] Zhang Jihua, Li Yutong, Chen L M, et al. Studies of high energy density physics and laboratory astrophysics driven by intense lasers[J]. Journal of Physics: Conference Series, 717, 012004(2016).

    [4] Casner A, Rigon G, Albertazzi B, et al. Turbulent hydrodynamics experiments in high energy density plasmas: scientific case and preliminary results of the TurboHEDP project[J]. High Power Laser Science and Engineering, 6, e44(2018).

    [5] Kuranz C C, Park H S, Remington B A, et al. Astrophysically relevant radiation hydrodynamics experiment at the National Ignition Facility[J]. Astrophysics and Space Science, 336, 207-211(2011).

    [6] Remington B A, Drake R P, Ryutov D D. Experimental astrophysics with high power lasers and Z pinches[J]. Reviews of Modern Physics, 78, 755-807(2006).

    [7] Remington B A, Arnett D, Paul R, et al. Modeling astrophysical phenomena in the laboratory with intense lasers[J]. Science, 284, 1488-1493(1999).

    [8] Clark D S, Weber C R, Milovich J L, et al. Three-dimensional modeling and hydrodynamic scaling of National Ignition Facility implosions[J]. Physics of Plasmas, 26, 050601(2019).

    [9] Clark D S, Marinak M M, Weber C R, et al. Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign[J]. Physics of Plasmas, 22, 022703(2015).

    [10] Loomis E N, Braun D, Batha S H, et al. Areal density evolution of isolated surface perturbations at the onset of X-ray ablation Richtmyer-Meshkov growth[J]. Physics of Plasmas, 18, 092702(2011).

    [11] Rinderknecht H G, Rosenberg M J, Zylstra A B, et al. Using multiple secondary fusion products to evaluate fuel ρR, electron temperature, and mix in deuterium-filled implosions at the NIF[J]. Physics of Plasmas, 22, 082709(2015).

    [12] Tommasini R, Landen O, Hopkins L B, et al. Time-resolved fuel density profiles of the stagnation phase of indirect-drive inertial confinement implosions[J]. Physical Review Letters, 125, 155003(2020).

    [13] Borm B, Khaghani D, Neumayer P. Properties of laser-driven hard X-ray sources over a wide range of laser intensities[J]. Physics of Plasmas, 26, 023109(2019).

    [14] Armstrong C D, Brenner C M, Zemaityte E, et al. Bremsstrahlung emission profile from intense laser-solid interactions as a function of laser focal spot size[J]. Plasma Physics and Controlled Fusion, 61, 034001(2019).

    [15] Jarrott L C, Kemp A J, Divol L, et al. Kα and bremsstrahlung X-ray radiation backlighter sources from short pulse laser driven silver targets as a function of laser pre-pulse energy[J]. Physics of Plasmas, 21, 031211(2014).

    [16] Wang Jian, Zhao Zongqing, He Weihua, et al. Radiography of a Kα X-ray source generated through ultrahigh picosecond laser–nanostructure target interaction[J]. Chinese Optics Letters, 13, 031001(2015).

    [17] Vaughan K, Moore A S, Smalyuk V, et al. High-resolution 22–52 keV backlighter sources and application to X-ray radiography[J]. High Energy Density Physics, 9, 635-641(2013).

    [18] Xiong Jun, Dong Jiaqin, Jia Guo, et al. Optimization of 4.7-keV X-ray titanium sources driven by 100-ps laser pulses[J]. Chinese Physics B, 22, 065201(2013).

    [19] Le Pape S, Divol L, Macphee A, et al. Optimization of high energy X ray production through laser plasma interaction[J]. High Energy Density Physics, 31, 13-18(2019).

    [20] Chen Hui, Hermann M R, Kalantar D H, et al. High-energy (>70 keV) X-ray conversion efficiency measurement on the ARC laser at the National Ignition Facility[J]. Physics of Plasmas, 24, 033112(2017).

    [21] Tommasini R, MacPhee A, Hey D, et al. Development of backlighting sources for a Compton radiography diagnostic of inertial confinement fusion targets (invited)[J]. Review of Scientific Instruments, 79, 10E901(2008).

    [22] Tommasini R, Hatchett S P, Hey D S, et al. Development of Compton radiography of inertial confinement fusion implosions[J]. Physics of Plasmas, 18, 056309(2011).

    [23] Hall G N, Izumi N, Tommasini R, et al. AXIS: an instrument for imaging Compton radiographs using the Advanced Radiography Capability on the NIF[J]. Review of Scientific Instruments, 85, 11D624(2014).

    [24] Tommasini R, Bailey C, Bradley D K, et al. Short pulse, high resolution, backlighters for point projection high-energy radiography at the National Ignition Facility[J]. Physics of Plasmas, 24, 053104(2017).

    [25] Tian Chao, Yu Minghai, Shan Lianqiang, et al. Radiography of direct drive double shell targets with hard X-rays generated by a short pulse laser[J]. Nuclear Fusion, 59, 046012(2019).

    [26] Theobald W, Solodov A A, Stoeckl C, et al. Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion[J]. Nature Communications, 5, 5785(2014).

    [27] Sawada H, Lee S, Shiroto T, et al. Flash Kα radiography of laser-driven solid sphere compression for fast ignition[J]. Applied Physics Letters, 108, 254101(2016).

    [28] Le Pape S, Neumayer P, Fortmann C, et al. X-ray radiography and scattering diagnosis of dense shock-compressed matter[J]. Physics of Plasmas, 17, 056309(2010).

    [29] Morace A, Fedeli L, Batani D, et al. Development of X-ray radiography for high energy density physics[J]. Physics of Plasmas, 21, 102712(2014).

    [30] Chu Genbai, Xi Tao, Yu Minghai, et al. High-energy X-ray radiography of laser shock loaded metal dynamic fragmentation using high-intensity short-pulse laser[J]. Review of Scientific Instruments, 89, 115106(2018).

    [31] de Rességuier T, Prudhomme G, Roland C, et al. Picosecond X-ray radiography of microjets expanding from laser shock-loaded grooves[J]. Journal of Applied Physics, 124, 065106(2018).

    [32] Andreev A A, Bel’kov S A, Platonov K Y, et al. Picosecond X-ray radiography of superdense high-temperature laser plasma[J]. Optics and Spectroscopy, 123, 471-481(2017).

    [33] Sawada H, Daykin T S, Hutchinson T M, et al. Development of broadband X-ray radiography for diagnosing magnetically driven cylindrically compressed matter[J]. Physics of Plasmas, 26, 083104(2019).

    [34] Dizière A, Pelka A, Ravasio A, et al. Formation and propagation of laser-driven plasma jets in an ambient medium studied with X-ray radiography and optical diagnostics[J]. Physics of Plasmas, 22, 012702(2015).

    [35] Brambrink E, Baton S, Koenig M, et al. Short-pulse laser-driven X-ray radiography[J]. High Power Laser Science and Engineering, 4, e30(2016).

    [36] Khan S F, Martinez D A, Kalantar D H, et al. A dual high-energy radiography platform with 15 μm resolution at the National Ignition Facility[J]. Review of Scientific Instruments, 92, 043712(2021).

    [37] Hill M P, Williams G J, Zylstra A B, et al. High resolution >40 keV X-ray radiography using an edge-on micro-flag backlighter at NIF-ARC[J]. Review of Scientific Instruments, 92, 033535(2021).

    [38] Stoeckl C, Epstein R, Betti R, et al. Monochromatic backlighting of direct-drive cryogenic DT implosions on OMEGA[J]. Physics of Plasmas, 24, 056304(2017).

    [39] Casey D T, Woods D  T, Smalyuk V A, et al. Performance and mix measurements of indirect drive Cu-doped Be implosions[J]. Physical Review Letters, 114, 205002(2015).

    [40] Faenov A Y, Pikuz T A, Mabey P, et al. Advanced high resolution X-ray diagnostic for HEDP experiments[J]. Scientific Reports, 8, 16407(2018).

    [41] Hausladen P, Blackston M A, Brubaker E, et al. Fast neutron codedaperture imaging of special nuclear material configurations[C]Proceedings of the 53rd Annual Meeting of the INMM. lo, 2012.

    [42] Wang Sheng, Zou Yubin, Zhang Xueshuang, et al. Coded source imaging simulation with visible light[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 651, 187-191(2011).

    [43] Li Yuanji, Huang Zhifeng, Chen Zhiqiang, et al. Preliminary study of coded-source-based neutron imaging at the CPHS[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 651, 131-134(2011).

    [44] Grünauer F. Image deconvolution and coded masks in neutron radiography[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 542, 342-352(2005).

    [45] Zhu Qihua, Zhou Kainan, Su Jingqin, et al. The Xingguang-III laser facility: precise synchronization with femtosecond, picosecond and nanosecond beams[J]. Laser Physics Letters, 15, 015301(2018).

    [46] Hanisch R J, White R L, Gillil R L. Deconvolution of Hubbles space telescope images spectra[M]Jansson P A. Deconvolution of Images Spectra. 2nd ed. San Diego: Academic Press, Inc. , 1997.

    [47] Biggs D S C, Andrews M. Acceleration of iterative image restoration algorithms[J]. Applied Optics, 36, 1766-1775(1997).

    [48] Fiksel G, Marshall F J, Mileham C, et al. Note: spatial resolution of Fuji BAS-TR and BAS-SR imaging plates[J]. Review of Scientific Instruments, 83, 086103(2012).

    [49] Park H S, Maddox B R, Giraldez E, et al. High-resolution 17-75 keV backlighters for high energy density experiments[J]. Physics of Plasmas, 15, 072705(2008).

    [50] Park H S, Chambers D M, Chung H K, et al. High-energy Kα radiography using high-intensity, short-pulse lasers[J]. Physics of Plasmas, 13, 056309(2006).

    [51] Yu Minghai, Tan Fang, Yan Yonghong, . Development of filter stack spectrometer for spectrum measurement of X ray generated by laser[J]. Atomic Energy Science and Technology, 51, 1090-1095(2017).

    Tiankui Zhang, Lianqiang Shan, Minghai Yu, Feng Lu, Weimin Zhou, Chao Tian, Fang Tan, Yonghong Yan, Feng Zhang, Zongqiang Yuan, Qiuyue Xu, Weiwu Wang, Zhigang Deng, Jian Teng, Dongxiao Liu, Lei Yang, Wei Fan, Yue Yang, Kainan Zhou, Jingqin Su, Yuchi Wu, Yongkun Ding, Yuqiu Gu. Source-coded radiography technique with high spatial-resolution for X-ray source driven by ps-laser[J]. High Power Laser and Particle Beams, 2022, 34(12): 122001
    Download Citation