• Journal of Semiconductors
  • Vol. 43, Issue 6, 062302 (2022)
Fangyuan Meng1、2、3, Hongyan Yu1、2、3, Xuliang Zhou1、2、3, Mengqi Wang1、2、3, Yejin Zhang2, Wenyu Yang1、2、3, and Jiaoqing Pan1、2、3
Author Affiliations
  • 1Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, China
  • show less
    DOI: 10.1088/1674-4926/43/6/062302 Cite this Article
    Fangyuan Meng, Hongyan Yu, Xuliang Zhou, Mengqi Wang, Yejin Zhang, Wenyu Yang, Jiaoqing Pan. Low fabrication cost wavelength tunable WG-FP hybrid-cavity laser working over 1.7 μm[J]. Journal of Semiconductors, 2022, 43(6): 062302 Copy Citation Text show less
    References

    [1] Y A Bakhirkin, A A Kosterev, C Roller et al. Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection. Appl Opt, 43, 2257(2004).

    [2] K Fobelets, C Panteli, O Sydoruk et al. Ammonia sensing using arrays of silicon nanowires and graphene. J Semicond, 39, 063001(2018).

    [3] Z S Chen, Z Chen, Z L Song et al. Smart gas sensor arrays powered by artificial intelligence. J Semicond, 40, 111601(2019).

    [4] W Zeller, L Naehle, P Fuchs et al. DFB lasers between 760 nm and 16 μm for sensing applications. Sens Basel Switz, 10, 2492(2010).

    [5] H Y Yu, P F Wang, J P Mi et al. 1.8-μm DBR lasers with over 11-nm continous wavelength tuning range for multi-species gas detection. Asia Communications and Photonics Conference, 1(2017).

    [6] L Tao, Z Kai, W Cuiluan et al. Fabrication of practical 1730 nm waveband laser diodes with buried heterojunction structures. Chin J Semicond, 27, 1467(2006).

    [7] H Y Yu, J Q Pan, Y B Shao et al. 1.82-μm distributed feedback lasers with InGaAs/InGaAsP multiple-quantum wells for a H2O sensing system. Chin Opt Lett, 11, 31404(2013).

    [8] X H Guo, A He, Y K Su. Recent advances of heterogeneously integrated III–V laser on Si. J Semicond, 40, 101304(2019).

    [9] Y Liu, Y Sun, D H Kong et al. Frequency and wavelength tunable optical microwave source based on a distributed Bragg reflector self-pulsation laser. J Semicond, 31, 064007(2010).

    [10] B Niu, H Y Yu, L Q Yu et al. A 1.65 μm three-section distributed Bragg reflector (DBR) laser for CH4 gas sensors. J Semicond, 34, 104004(2013).

    [11] H Y Yu, J Q Pan, X L Zhou et al. A widely tunable three-section DBR lasers for multi-species gas detection. Appl Sci, 11, 2618(2021).

    [12] H Y Yu, M Q Wang, D B Zhou et al. A 1.6-μm widely tunable distributed Bragg reflector laser diode based on InGaAs/InGaAsP quantum-wells material. Opt Commun, 497, 127201(2021).

    [13] H Luo, C G Yang, S W Xie et al. High order DBR GaSb based single longitude mode diode lasers at 2 μm wavelength. J Semicond, 39, 104007(2018).

    [14] C J Chang-Hasnain. Tunable VCSEL. IEEE J Sel Top Quantum Electron, 6, 978(2000).

    [15] B Potsaid, V Jayaraman, J G Fujimoto et al. MEMS tunable VCSEL light source for ultrahigh speed 60kHz – 1MHz axial scan rate and long range centimeter class OCT imaging. Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI, 8213, 8213M(2012).

    [16] S Schilt, K Zogal, B Kögel et al. Spectral and modulation properties of a largely tunable MEMS-VCSEL in view of gas phase spectroscopy applications. Appl Phys B, 100, 321(2010).

    [17] L A Coldren, B I Miller, K Iga et al. Monolithic two-section GaInAsP/InP active-optical-resonator devices formed by reactive ion etching. Appl Phys Lett, 38, 315(1981).

    [18] B Liu, A Shakouri, J E Bowers. Wide tunable double ring resonator coupled lasers. IEEE Photonics Technol Lett, 14, 600(2002).

    [19] J L Jin, L Wang, T T Yu et al. Widely wavelength switchable V-coupled-cavity semiconductor laser with ~40 dB side-mode suppression ratio. Opt Lett, 36, 4230(2011).

    [20] Q A Chen, X Ma, W Sun et al. Demonstration of multi-channel interference widely tunable semiconductor laser. IEEE Photonics Technol Lett, 28, 2862(2016).

    [21] X W Ma, Y Z Huang, Y D Yang et al. Mode and lasing characteristics for hybrid square-rectangular lasers. IEEE J Sel Top Quantum Electron, 23, 1(2017).

    [22] X W Ma, Y Z Huang, Y D Yang et al. All-optical flip-flop based on hybrid square-rectangular bistable lasers. Opt Lett, 42, 2291(2017).

    [23] Y Z Hao, Y Z Huang, F L Wang et al. Widely tunable single-mode hybrid square/rhombus-rectangular lasers. 2018 Asia Communications and Photonics Conference, 1(2018).

    [24] Y Z Huang, X W Ma, Y D Yang et al. Hybrid-cavity semiconductor lasers with a whispering-gallery cavity for controlling Q factor. Sci China Inf Sci, 61, 1(2018).

    [25] J P Mi, H Y Yu, L J Yuan et al. Distributed Bragg reflector laser (1.8 μm) with 10 nm wavelength tuning range. Chin Opt Lett, 13, 41401(2015).

    [26]

    [27] F Y Meng, H Y Yu, X L Zhou et al. Quantum wells micro-ring resonator laser emitting at 1746 nm for gas sensing. Chin Opt Lett, 19, 041406(2021).

    [28]

    Fangyuan Meng, Hongyan Yu, Xuliang Zhou, Mengqi Wang, Yejin Zhang, Wenyu Yang, Jiaoqing Pan. Low fabrication cost wavelength tunable WG-FP hybrid-cavity laser working over 1.7 μm[J]. Journal of Semiconductors, 2022, 43(6): 062302
    Download Citation