• Acta Optica Sinica
  • Vol. 37, Issue 4, 424002 (2017)
Li Yang*, Xia Xinlin, Sun Chuang, Fan Chao, and Tan Heping
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/aos201737.0424002 Cite this Article Set citation alerts
    Li Yang, Xia Xinlin, Sun Chuang, Fan Chao, Tan Heping. Experimental and Numerical Study on Pore-Scale Spectral Radiative Properties of Ni Foam[J]. Acta Optica Sinica, 2017, 37(4): 424002 Copy Citation Text show less
    References

    [1] Wang F Q, Guan Z N, Tan J Y, et al. Transient thermal performance response characteristics of porous-medium receiver heated by multi-dish concentrator[J]. International Communications in Heat and Mass Transfer, 2016, 75: 36-41.

    [2] Huang Y, Chao C Y H, Cheng P. Effects of preheating and operation conditions on combustion in a porous medium[J]. International Journal of Heat and Mass Transfer, 2002, 45(21): 4315-4324.

    [3] Fan Xuji. On the radiative heat transfer in the porous medium[J]. Spacecraft Engineering, 2011, 20(1): 8-13.

    [4] Bedarev I A, Mironov S G, Serdyuk K M, et al. Physical and mathematical modeling of a supersonic flow around a cylinder with a porous insert[J]. Journal of Applied Mechanics and Technical Physics, 2011, 52(1): 9-17.

    [5] Coquard R, Rousseau B, Echegut P, et al. Investigations of the radiative properties of Al-NiP foams using tomographic images and stereoscopic micrographs[J]. International Journal of Heat and Mass Transfer, 2012, 55(5-6): 1606-1619.

    [6] Zhao C Y, Lu T J, Hodson H P. Thermal radiation in ultralight metal foams with open cells[J]. International Journal of Heat and Mass Transfer, 2004, 47(14): 2927-2939.

    [7] Xu Zhiguo, Wang Meiqin, Zhao Changying. Morphology effect on radiation performance of open-cell metal foams[J]. Journal of Thermal Science and Technology, 2015, 14(4): 267-271.

    [8] Dietrich B, Fischedick T, Heissler S, et al. Optical parameters for characterization of thermal radiation in ceramic sponges: Experimental results and correlation[J]. International Journal of Heat and Mass Transfer, 2014, 79: 655-665.

    [9] Sacadura J F, Baillis D. Experimental characterization of thermal radiation properties of dispersed media[J]. International Journal of Thermal Sciences, 2002, 41(7): 699-707.

    [10] Cui F Q, He Y L, Cheng Z D, et al. Numerical simulations of the solar transmission process for a pressurized volumetric receiver[J]. Energy, 2012, 46(1): 618-628.

    [11] Zmywaczyk J, Koniorczyk P. Numerical solution of inverse radiative-conductive transient heat transfer problem in a grey participating medium[J]. International Journal of Thermophysics, 2009, 30(4): 1438-1451.

    [12] Das R, Mishra S C, Uppaluri R. Retrieval of thermal properties in a transient conduction-radiation problem with variable thermal conductivity[J]. International Journal of Heat and Mass Transfer, 2009, 52(11): 2749-2758.

    [13] Petrasch J, Haussener S, Lipinski W. Discrete vs. continuum-scale simulation of radiative transfer in semitransparent two-phase media[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112: 1450-1459.

    [14] Coquard R, Baillis D, Randrianalisoa J. Homogeneous phase and multi-phase approaches for modeling radiative transfer in foams[J]. International Journal of Thermal Sciences, 2011, 50(9): 1648-1663.

    [15] Randrianalisoa J, Baillis D. Thermal conductive and radiative properties of solid foams: Traditional and recent advanced modelling approaches[J]. Comptes Rendus - Physique, 2014, 15(8-9): 683-695.

    [16] Rousseau B, de Sousa Meneses D, Echegut P, et al. Textural parameters influencing the radiative properties of a semitransparent porous media[J]. International Journal of Thermal Sciences, 2011, 50(2): 178-186.

    [17] Huang Xing, Zhang Xiaoxian, Shuai Yong, et al. Spectral radiation property investigation of iron based oxide micro-particles[J]. Journal of Chemical Industry and Engineering, 2011, 66(s1): 308-313.

    [18] Tan Hai, Wang Dadong, Xue Yanling, et al. Parallelization of 3D thinning algorithm for extracting skeleton of micro-CT vasculature[J]. Acta Optica Sinica, 2015, 35(11): 1117003.

    [19] Mao Lingtao, Chiang Fupen, Yuan Zexun. Three-dimensional displacement measurement in solid using digital volumetric speckle photography based on computer tomography[J]. Acta Optica Sinica, 2015, 35(3): 0312001.

    [20] Li Yang, Xia Xinlin, Chen Xue, et al. Simulation study on accelerated pore-scale radiative transfer of Ni foam[J]. Acta Optica Sinica, 2016, 36(11): 1124001.

    [21] Coquard R, Rochais D, Baillis D. Modeling of the coupled conductive and radiative heat transfer in NiCrAl from photothermal measurements and X-ray tomography[J]. Special Topics and Reviews in Porous Media, 2011, 2(4): 249-265.

    [22] Tan Heping, Xia Xinlin, Liu Linhua, et al. Numerical calculation of infrared radiative transfer[M]. Harbin: Press of Harbin Institute of Technology, 2006: 157-163.

    [23] Siegel R, Howell J R. Thermal radiation heat transfer[M]. New York: Taylor and Francis, 2002.

    [25] Suter S, Steinfeld A, Haussener S. Pore-level engineering of macroporous media for increased performance of solar-driven thermochemical fuel processing[J]. International Journal of Heat and Mass Transfer, 2014, 78: 688-698.

    [26] Randrianalisoa J, Baillis D. Radiative transfer in dispersed media: Comparison between homogeneous phase and multiphase approaches[J]. Journal of Heat Transfer, 2010, 132(2): 023405.

    Li Yang, Xia Xinlin, Sun Chuang, Fan Chao, Tan Heping. Experimental and Numerical Study on Pore-Scale Spectral Radiative Properties of Ni Foam[J]. Acta Optica Sinica, 2017, 37(4): 424002
    Download Citation