• Infrared and Laser Engineering
  • Vol. 47, Issue 11, 1105007 (2018)
Wang Cong1 and Lv Dongxiang2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla201847.1105007 Cite this Article
    Wang Cong, Lv Dongxiang. Theoretical analysis on crystalline Raman amplifier[J]. Infrared and Laser Engineering, 2018, 47(11): 1105007 Copy Citation Text show less
    References

    [1] Bai F, Wang Q P, Jiao Z, et al. Efficient diode end-pumped acousto-optically Q-switched Nd: YAG/BaTeMo2O9 Raman laser [J]. Appl Opt, 2016, 55(32): 9265-9269.

    [2] Lin H Y, Pan X, Huang X H, et al. Multi-wavelength passively Q-switched c-cut Nd: YVO4 self-Raman laser with Cr4+: YAG saturable absorber [J]. Opt Commun, 2016, 368: 39-42.

    [3] Li B, Sun B, Lei P, et al. High-efficiency, high-repetition-rate Nd: YVO4 self-Raman laser pumped by a wavelength-locked 913.9-nm diode laser [J]. Appl Opt, 2017, 56(5): 1542-1545.

    [4] Guo J H, Duan Y M, Wang H Y, et al. Efficient Nd: YAG\KTiOAsO4 cascaded Raman laser emitting around 1.2 μm [J]. Opt Mater, 2017, 71: 66-69.

    [5] Ding Xin, Zhang Wei, Liu Junjie, et al. High efficiency actively Q-switched Nd: YVO4 self-Raman laser under 880 nm in-band pumping [J]. Infrared and Laser Engineering, 2016, 45 (1): 0105002. (in Chinese)

    [6] Li Shutao, Dong Yuanjin, Jin Guangyong, et al. Normalized theoretical analysis of continuous-wave intracavity frequency-doubled Raman laser[J]. Infrared and Laser Engineering, 2015, 44(1): 71-75. (in Chinese)

    [7] Zhang H N, Li P. High-efficiency eye-safe Nd: YAG/SrWO4 Raman laser operating at 1 664 nm [J]. Appl Phys B, 2016, 122(1): 12.

    [8] Fan L, Zhao W Q, Qiao X, et al. An efficient continuous-wave YVO4/Nd: YVO4/YVO4 self-Raman laser pumped by a wavelength-locked 878.9 nm laser diode [J]. Chin Phys B, 2016, 25(11): 114207.

    [9] Wang Hui, Zhang Huifeng, Guo Tao. Dual-wavelength eye-safe laser based on Nd: GYSGG/YVO4 intracavity stimulated Raman conversion [J]. Infrared and Laser Engineering, 2015, 44(12): 3512-3516. (in Chinese)

    [10] Li Wenchao, Zhang Jingru, Sun Yuchao, et al. Design and typical application of silicon Raman laser [J]. Optics Precis Eng, 2013, 21(2): 308-315. (in Chinese)

    [11] Raghunathan V, Borlaug D, Rice R R, et al. Demonstration of a mid-infrared silicon Raman amplifier [J]. Opt Express, 2007, 15(22): 14355-14362.

    [12] Lisinetskii V A, Orlovich V A, Rhee H, et al. Efficient Raman amplification of low divergent radiation in barium nitrate crystal [J]. Appl Phys B, 2008, 91: 299-303.

    [13] Wang C, Cong Z H, Liu Z J, et al. Theoretical and experimental investigation of an efficient pulsed barium tungstate Raman amplifier at 1 180 nm [J]. Opt Commun, 2014, 313: 80-84.

    [14] Zhang Wenhui, Ding Shuanghong, Ding Ze, et al. A PbWO4 solid-state Raman amplifier excited by 1 064 nm nanosecond pulses[J]. Chinese J Lasers, 2014, 41(5): 0502011. (in Chinese)

    [15] Ding S H, Zhang X Y, Wang Q P, et al. Numerical optimization of the extracavity Raman laser with barium nitrate crystal [J]. Opt Commun, 2006, 267: 480-486.

    [16] Pask H M. The design and operation of solid-state Raman lasers [J]. Prog in Quant Electron, 2003, 27: 3-56.

    CLP Journals

    [1] Zhenxu Bai, Xin Hao, Hao Zheng, Hui Chen, Yaoyao Qi, Jie Ding, Bingzheng Yan, Can Cui, Yulei Wang, Zhiwei Lv. Research progress of high-power free-space Raman amplification technology (invited)[J]. Infrared and Laser Engineering, 2023, 52(8): 20230337

    Wang Cong, Lv Dongxiang. Theoretical analysis on crystalline Raman amplifier[J]. Infrared and Laser Engineering, 2018, 47(11): 1105007
    Download Citation