• Opto-Electronic Engineering
  • Vol. 46, Issue 3, 1 (2019)
Lin Xiao1、2, Hao Jianying1, Zheng Mingjie1、3, Dai Tiangui1、3, Li Hui1、2, and Ren Yuhong1、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.12086/oee.2019.180642 Cite this Article
    Lin Xiao, Hao Jianying, Zheng Mingjie, Dai Tiangui, Li Hui, Ren Yuhong. Optical holographic data storage—The time for new development[J]. Opto-Electronic Engineering, 2019, 46(3): 1 Copy Citation Text show less
    References

    [1] Gabor D. A new microscopic principle[J]. Nature, 1948, 161(4098): 777–779.

    [2] Gabor D. Microscopy by reconstructed wave-fronts[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1949, 197(1051): 454–487.

    [3] Gabor D. Microscopy by reconstructed wave fronts: II[J]. Proceedings of the Physical Society: Section B, 1951, 64(6): 449–469.

    [4] Kirkpatrick P, El-Sum H M A. Image formation by reconstructed wave fronts. I. Physical principles and methods of refinement[J]. Journal of the Optical Society of America, 1956, 46(10): 825–830.

    [5] El-Sum H M A. Reconstructed wave-front microscopy[D]. Stanford: Stanford University, 1953.

    [6] Baez A V. Resolving power in diffraction microscopy with special reference to X-rays[J]. Nature, 1952, 169(4310): 963–964.

    [7] Rogers G L. Gabor diffraction microscopy: the hologram as a generalized zone-plate[J]. Nature, 1950, 166(4214): 237.

    [8] Leith E N, Upatnieks J. Reconstructed wavefronts and communication theory[J]. Journal of the Optical Society of America, 1962, 52(10): 1123–1130.

    [9] Leith E N, Upatnieks J. Wavefront reconstruction with diffused illumination and three-dimensional objects[J]. Journal of the Optical Society of America, 1964, 54(11): 1295–1301.

    [10] Van Heerden P J. Theory of optical information storage in solids[J]. Applied Optics, 1963, 2(4): 393–400.

    [11] Leith E N, Kozma A, Upatnieks J, et al. Holographic data storage in three-dimensional media[J]. Applied Optics, 1966, 5(8): 1303–1311.

    [12] Ashkin A, Boyd G D, Dziedzic J M, et al. Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3[J]. Applied Physics Letters, 1966, 9(1): 72–74.

    [13] Staebler D L, Amodei J J. Coupled-wave analysis of holographic storage in LiNbO3[J]. Journal of Applied Physics, 1972, 43(3): 1042–1049.

    [14] Staebler D L, Burke W J, Phillips W, et al. Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3[J]. Applied Physics Letters, 1975, 26(4): 182–184.

    [15] Ishida A, Mikami O, Miyazawa S, et al. Rh-doped LiNbO3 as an improved new material for reversible holographic storage[J]. Applied Physics Letters, 1972, 21(5): 192–193.

    [16] Shah P, Rabson T A, Tittel F K, et al. Volume holographic recording and storage in Fe-doped LiNbO3 using optical pulses[J]. Applied Physics Letters, 1974, 24(3): 130–131.

    [17] Stewart W C, Mezrich R S, Cosentino L S, et al. An experimental read-write holographic memory[J]. RCA Review, 1973, 34: 3–44.

    [18] Nishida N, Sakaguchi M, Saito F. Holographic coding plate: a new application of holographic memory[J]. Applied Optics, 1973, 12(7): 1663–1674.

    [19] D’Auria L, Huignard J, Spitz E. Holographic read-write memory and capacity enhancement by 3-D storage[J]. IEEE Transactions on Magnetics, 1973, 9(2): 83–94.

    [20] D’Auria L, Huignard J P, Slezak V C, et al. Experimental holographic read-write memory using 3-D storage[J]. Applied Optics, 1974, 13(4): 808–818.

    [21] Amodei J J, Staebler D L. Holographic pattern fixing in electro-optic crystals[J]. Applied Physics Letters, 1971, 18(12): 540–542.

    [22] Mikaeliane A L. Holographic bulk memories using lithium niobate crystals for data recording[M]//Barrekette E S, Stroke G W, Nesterikhin Y E, et al. Optical Information Processing. Boston, MA: Springer, 1978: 217–233.

    [23] Tsunoda Y, Tatsuno K, Kataoka K, et al. Holographic video disk: an alternative approach to optical video disks[J]. Applied Optics, 1976, 15(6): 1398–1403.

    [24] Kubota K, Ono Y, Kondo M, et al. Holographic disk with high data transfer rate: its application to an audio response memory[J]. Applied Optics, 1980, 19(6): 944–951.

    [25] Mok F H, Tackitt M C, Stoll H M. Storage of 500 high-resolution holograms in a LiNbO3 crystal[J]. Optics Letters, 1991, 16(8): 605–607.

    [26] Mok F H. Angle-multiplexed storage of 5000 holograms in lithium niobate[J]. Optics Letters, 1993, 18(11): 915–917.

    [27] Heanue J F, Bashaw M C, Hesselink L. Volume holographic storage and retrieval of digital data[J]. Science, 1994, 265(5173): 749–752.

    [28] Bernal M P, Coufal H, Grygier R K, et al. A precision tester for studies of holographic optical storage materials and recording physics[J]. Applied Optics, 1996, 35(14): 2360–2374.

    [29] Shelby R M, Hoffnagle J A, Burr G W, et al. Pixel-matched holographic data storage with megabit pages[J]. Optics Letters, 1997, 22(19): 1509–1511.

    [30] Hong J H, McMichael I C, Chang T Y, et al. Volume holographic memory systems: techniques and architectures[J]. Optical Engineering, 1995, 34(8): 2193–2203.

    [31] Curtis K. Digital holographic data storage prototype[C]//Proceedings of 2000 Optical Data Storage. Conference Digest, Whisler, BC, Canada, 2000: 164–166.

    [32] Pu A, Psaltis D. Holographic data storage with 100 bits/μm2 density[C]//Proceedings of 1997 Optical Data Storage Topical Meeting ODS Conference Digest, Tucson, AZ, USA, 1997: 48–49.

    [33] Dhar L, Curtis K, Tackitt M, et al. Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems[J]. Optics Letters, 1998, 23(21): 1710–1722.

    [34] Thaxter J B, Kestigian M. Unique properties of SBN and their use in a layered optical memory[J]. Applied Optics, 1974, 13(4): 913–924.

    [35] Zhou H J, Morozov V, Neff J. Characterization of dupont photopolymers in infrared light for free-space optical interconnects[J]. Applied Optics, 1995, 34(32): 7457–7459.

    [36] Pu A, Psaltis D. High-density recording in photopolymer-based holographic three-dimensional disks[J]. Applied Optics, 1996, 35(14): 2389–2398.

    [37] Bieringer T. Photoaddressable polymers[M]//Coufal H J, Psaltis D, Sincerbox G T. Holographic Data Storage. Berlin, Heidelberg: Springer, 2000: 209–228.

    [38] Orlov S S, Bjornson E, Phillips W, et al. High transfer rate (1 Gbit/sec) high-capacity holographic disk digital data storage system[C]//Proceedings of 2000 Conference on Lasers and Electro-Optics, San Francisco, CA, USA , 2000: 190–191.

    [39] Waldman D A, Li H Y S, Horner M G. Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material[J]. Journal of Imaging Science and Technology, 1997, 41(5): 497–514.

    [40] Waldman D A, Butler C J, Raguin D H. CROP holographic storage media for optical data storage greater than 100 bits/μm2[J]. Proceedings of SPIE, 2003, 5216, doi: 10.1117/12.513614.

    [41] Suzuki N, Tomita Y, Kojima T. Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films[J]. Applied Physics Letters, 2002, 81(22): 4121–4123.

    [42] Goldenberg L M, Sakhno O V, Smirnova T N, et al. Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation[J]. Chemistry of Materials, 2008, 20(14): 4619–4627.

    [43] Omura K, Tomita Y. Photopolymerization kinetics and volume holographic recording in ZrO2 nanoparticle-polymer composites at 404 nm[J]. Journal of Applied Physics, 2010, 107(2): 023107.

    [44] Hata E, Mitsube K, Momose K, et al. Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization[J]. Optical Materials Express, 2011, 1(2): 207–222.

    [45] Li C M Y, Cao L C, He Q S, et al. Holographic kinetics for mixed volume gratings in gold nanoparticles doped photopolymer[J]. Optics Express, 2014, 22(5): 5017–5028.

    [46] Li C M Y, Cao L C, Wang Z, et al. Hybrid polarization-angle multiplexing for volume holography in gold nanoparticle-doped photopolymer[J]. Optics Letters, 2014, 39(24): 6891–6894.

    [47] Tomita Y, Urano H, Fukamizu T A, et al. Nanoparticle-polymer composite volume holographic gratings dispersed with ultrahigh-refractive-index hyperbranched polymer as organic nanoparticles[J]. Optics Letters, 2016, 41(6): 1281–1284.

    [48] Liu P, Zhao Y, Li Z R, et al. Improvement of ultrafast holographic performance in silver nanoprisms dispersed photopolymer[J]. Optics Express, 2018, 26(6): 6993–7004.

    [49] Ortu o M, Gallego S, Márquez A, et al. Biophotopol: a sustainable photopolymer for holographic data storage applications[J]. Materials, 2012, 5(5): 772–783.

    [50] Ortu o M, Fernández E, Fuentes R, et al. Improving the performance of PVA/AA photopolymers for holographic recording[J]. Optical Materials, 2013, 35(3): 668–673.

    [51] Cody D, Gribbin S, Mihaylova E, et al. Low-toxicity photopolymer for reflection holography[J]. ACS Applied Materials & Interfaces, 2016, 8(28): 18481–18487.

    [52] Fan F L, Liu Y, Hong Y F, et al. Improving the polarization-holography performance of PQ/PMMA photopolymer by doping with THMFA[J]. Optics Express, 2018, 26(14): 17794–17803.

    [53] Liu P, Wang L L, Zhao Y, et al. Holographic memory performances of titanocene dispersed poly (methyl methacrylate) photopolymer with different preparation conditions[J]. Optical Materials Express, 2018, 8(6): 1441–1453.

    [54] Mok F H, Psaltis D, Burr G W. Spatially and angle-multiplexed holographic random access memory[J]. Proceedings of SPIE, 1993, 1773: 334–345.

    [55] Orlov S S, Phillips W, Bjornson E, et al. High data rate (10 Gbit/sec) demonstration in holographic disk digital data storage system[C]//Proceedings of the Summaries of Papers Presented at the Lasers and Electro-Optics. CLEO '02. Technical Diges, Long Beach, CA, USA, 2002: 70–71.

    [56] Rakuljic G A, Leyva V, Yariv A. Optical data storage by using orthogonal wavelength-multiplexed volume holograms[J]. Optics Letters, 1992, 17(20): 1471–1473.

    [57] Denz C, Pauliat G, Roosen G, et al. Volume hologram multiplexing using a deterministic phase encoding method[J]. Optics Communications, 1991, 85(2–3): 171–176.

    [58] John R, Joseph J, Singh K. Holographic digital data storage using phase-modulated pixels[J]. Optics and Lasers in Engineering, 2005, 43(2): 183–194.

    [59] Psaltis D, Levene M, Pu A, et al. Holographic storage using shift multiplexing[J]. Optics Letters, 1995, 20(7): 782–784.

    [60] Steckman G J, Pu A, Psaltis D. Storage density of shift-multiplexed holographic memory[J]. Applied Optics, 2001, 40(20): 3387–3394.

    [61] Pu A, Psaltis D. Holographic 3-D disks using shift multiplexing[C]//Summaries of papers presented at the Conference on Lasers and Electro-Optics, Anaheim, CA, USA, 1996: 165.

    [62] Darsky A M, Markov V B. Angular sensitivity of holograms with a reference speckle wave[J]. Proceedings of SPIE, 1991, 1238: 54–62.

    [63] Barbastathis G, Levene M, Psaltis D. Shift multiplexing with spherical reference waves[J]. Applied Optics, 1996, 35(14): 2403–2417.

    [64] Markov V, Millerd J, Trolinger J, et al. Multilayer volume holographic optical memory[J]. Optics Letters, 1999, 24(4): 265–267.

    [65] Orlov S S, Phillips W, Bjornson E, et al. High-transfer-rate high-capacity holographic disk data-storage system[J]. Applied Optics, 2004, 43(25): 4902–4914.

    [66] Horimai H, Tan X D. Collinear technology for a holographic versatile disk[J]. Applied Optics, 2006, 45(5): 910–914.

    [67] Horimai H, Tan X D, Li J. Collinear holography[J]. Applied Optics, 2005, 44(13): 2575–2579.

    [68] Horimai H, Tan X D. Advanced collinear holography[J]. Optical Review, 2005, 12(2): 90–92.

    [69] Horimai H, Tan X D. Holographic information storage system: today and future[J]. IEEE Transactions on Magnetics, 2007, 43(2): 943–947.

    [70] Shih H F. Integrated optical unit design for the collinear holographic storage system[J]. IEEE Transactions on Magnetics, 2007, 43(2): 948–950.

    [71] Wilson W L, Curtis K R, Anderson K E, et al. Realization of high-performance holographic data storage: the InPhase technologies demonstration platform[J]. Proceedings of SPIE, 2003, 5216: 178–191.

    [72] Dhar L, Curtis K, F cke T. Holographic data storage: coming of age[J]. Nature Photonics, 2008, 2(7): 403–405.

    [73] Wilson W L. Toward the commercial realization of high performance holographic data storage[C]//Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, San Francisco, CA, USA, 2004: 4.

    [74] Schnoes M, Ihas B, Dhar L, et al. Photopolymer use for holographic data storage[J]. Proceedings of SPIE, 2003, 4988: 68–76.

    [75] Anderson K, Curtis K. Polytopic multiplexing[J]. Optics Letters, 2004, 29(12): 1402–1404.

    [76] Tao S Q, Xu M. Spatioangularly-multiplexed three-dimensional holographic disks[J]. Acta Optica Sinica, 1997, 17(8): 1015–1020.

    [77] Yuan Q, Tao S Q, Song X H, et al. Disk-type 3-D holographic storage in a photorefractive crystal[J]. Chinese Journal of Lasers, 1999, 26(12): 1097–1102.

    [78] Song X H, Tao S Q, Jiang Z Q, et al. Study on thermal fixing process of holograms in photorefractive crystals[J]. Chinese Journal of Lasers, 2001, 28(1): 59–62.

    [79] Wan Y H, Yuan W, Liu G Q, et al. Study on the characteristics of scattering noise in photorefractive holographic storage[J]. Chinese Journal of Lasers, 2003, 30(6): 529–532.

    [80] Guo Y J, Zhang J, Liu C X, et al. Holographic storage properties of Zn:Fe:LiNbO3 crystals[J]. Acta Photonica Sinica, 2004, 33(5): 570–572.

    [81] Liu Y W, Liu L R, Zhou C H, et al. Experimental study of non-volatile holographic storage of doubly- and triply-doped lithium niobate crystals[J]. Chinese Journal of Lasers, 2001, 28(2): 165–168.

    [82] Yao H W, Huang M J, Chen Z Y, et al. Optimization of acrylamide-based photopolymer and its holographic character investigation[J]. Chinese Journal of Lasers, 2002, 29(11): 972–974.

    [83] Huang M J, Yao H W, Chen Z Y, et al. The factor of introducing the bragg-mismatch during the photopolymer holographic exposure[J]. Acta Photonica Sinica, 2002, 31(7): 855–859.

    [84] Huang M J, Yao H W, Chen Z Y, et al. Study on the character of novel green light sensitive high-density digital holographic photopolymer[J]. Acta Physica Sinica, 2002, 51(11): 2536–2541.

    [85] Huang M J, Yao H W, Chen Z Y, et al. The effect of the thickness of photopolymer on high-density holographic recording parameters[J]. Acta Photonica Sinica, 2002, 31(2): 246–249.

    [86] Bao P, He S R, He Q S, et al. Compensation method for misregistration in pixel-matched holographic data storage system[J]. Optical Technique, 2005, 31(2): 297–298, 301.

    [87] Cao L C, He Q S, Wei H Y, et al. Miniaturized volume holographic optical data storage and correlation system with a storage density of 10 Gb/cm3[J]. Chinese Science Bulletin, 2004, 49(23): 2495–2500.

    [88] Huang X B, He Q S, Wang J G, et al. Effect of performance of SLM and CCD on intrapage noise in volume[J]. Optical Technique, 2002, 28(6): 543–544.

    [89] Jin G F, Cao L C, He Q S, et al. Random modulation in high-density holographic data storage and correlation recognition system[J]. Proceedings of SPIE, 2003, 5206: 125–134.

    [90] Li J H, Cao L C, Gu H R, et al. Orthogonal-reference- pattern-modulated shift multiplexing for collinear holographic data storage[J]. Optics Letters, 2012, 37(5): 936–938.

    [91] Gu H R, Yin S F, Tan Q F, et al. Optimization of the geometrical shape of the aperture in holographic data storage system[J]. Proceedings of SPIE, 2007, 6827: 68271I.

    [92] Wei H Y, Luo S J, He Q S, et al. Novel holographic storage system with two data channels[J]. Proceedings of SPIE, 2005, 5908: 59081F.

    [93] Yu Y W, Chen C Y, Sun C C. Increase of signal-to-noise ratio of a collinear holographic storage system with reference modulated by a ring lens array[J]. Optics Letters, 2010, 35(8): 1130–1132.

    [94] Yu Y W, Yang C H, Yang T H, et al. Analysis of a lens-array modulated coaxial holographic data storage system with considering recording dynamics of material[J]. Optics Express, 2017, 25(19): 22947–22958.

    [95] Sun C C, Yu Y W, Hsieh S C, et al. Point spread function of a collinear holographic storage system[J]. Optics Express, 2007, 15(26): 18111–18118.

    [96] Lin X, Huang Y, Shimura T, et al. Fast non-interferometric iterative phase retrieval for holographic data storage[J]. Optics Express, 2017, 25(25): 30905–30915.

    [97] Lin X, Huang Y, Li Y, et al. Four-level phase pair encoding and decoding with single interferometric phase retrieval for holographic data storage[J]. Chinese Optics Letters, 2018, 16(3): 032101.

    [98] Tan X D, Horimai H, Arai R, et al. Phase modulated collinear holographic data storage system[C]//International Workshop on Holography and Related Technologies, 2016.

    [99] Lin X, Huang Y, Cheng Y B, et al. Inter-page-crosstalk reduction in holographic data storage system through phase modulation in signal region[J]. Japanese Journal of Applied Physics, 2016, 55(9S): 09SA07.

    [100] Lin X, Ke J, Wu A A, et al. An effective phase modulation in the collinear holographic storage[J]. Proceedings of SPIE, 2014, 9006: 900607.

    [101] Das B, Joseph J, Singh K. Performance analysis of content-addressable search and bit-error rate characteristics of a defocused volume holographic data storage system[J]. Applied Optics, 2007, 46(22): 5461–5470.

    [102] Das B, Joseph J, Singh K. Improved data search by zero-order (dc) peak filtering in a defocused volume holographic content-addressable memory[J]. Applied Optics, 2009, 48(1): 55–63.

    [103] Sun C C, Tsou R H, Chang W C, et al. Random phase-coded multiplexing of hologram volumes using ground glass[J]. Optical and Quantum Electronics, 1996, 28(10): 1551–1561.

    [104] Gao Q, Kostuk R. Improvement to holographic digital data-storage systems with random and pseudorandom phase masks[J]. Applied Optics, 1997, 36(20): 4853–4861.

    [105] Sun C C, Su W C, Wang B, et al. Diffraction selectivity of holograms with random phase encoding[J]. Optics Communications, 2000, 175(1–3): 67–74.

    [106] Xu X F, Cai L Z, Wang Y R, et al. Blind phase shift extraction and wavefront retrieval by two-frame phase-shifting interferometry with an unknown phase shift[J]. Optics Communications, 2007, 273(1): 54–59.

    [107] Jeon S H, Gil S K. 2-step phase-shifting digital holographic optical encryption and error analysis[J]. Journal of the Optical Society of Korea, 2011, 15(3): 244–251.

    [108] Hariharan P, Oreb B F, Eiju T. Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm[J]. Applied Optics, 1987, 26(13): 2504–2506.

    [109] Horimai H. Multi-level data write/retrieve by phase-locked collinear holography[C]//Asia Communications and Photonics Conference, Wuhan, 2016: AF1J.2.

    [110] Xu K, Huang Y, Lin X, et al. Unequally spaced four levels phase encoding in holographic data storage[J]. Optical Review, 2016, 23(6): 1004–1009.

    [111] Fienup J R. Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint[J]. Journal of the Optical Society of America A, 1987, 4(1): 118–123.

    [112] Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 1982, 21(15): 2758–2769.

    [113] Fienup J R, Wackerman C C. Phase-retrieval stagnation problems and solutions[J]. Journal of the Optical Society of America A, 1986, 3(11): 1897–1907.

    [114] Maiden A M, Rodenburg J M. An improved ptychographical phase retrieval algorithm for diffractive imaging[J]. Ultramicroscopy, 2009, 109(10): 1256–1262.

    [115] Pan X C, Liu C, Lin Q, et al. Ptycholographic iterative engine with self-positioned scanning illumination[J]. Optics Express, 2013, 21(5): 6162–6168.

    [116] Gureyev T E, Roberts A, Nugent K A. Phase retrieval with the transport-of-intensity equation: matrix solution with use of Zernike polynomials[J]. Journal of the Optical Society of America A, 1995, 12(9): 1932–1942.

    [117] Gureyev T E, Nugent K A. Rapid quantitative phase imaging using the transport of intensity equation[J]. Optics Communications, 1997, 133(1–6): 339–346.

    [118] Volkov V V, Zhu Y, De Graef M. A new symmetrized solution for phase retrieval using the transport of intensity equation[J]. Micron, 2002, 33(5): 411–416.

    [119] Lin X, Fujimura R, Umegaki S, et al. Single-shot phase reconstruction by iterative Fourier transform algorithm in the holographic data storage system[C]//International Symposium on Optical Memory 2016, Kyoto, Japan, 2016.

    CLP Journals

    [1] JIN Xin, HU Ying. Detection of Vehicle Crews Based on Modified Faster R-CNN[J]. Infrared Technology, 2020, 42(11): 1103

    Lin Xiao, Hao Jianying, Zheng Mingjie, Dai Tiangui, Li Hui, Ren Yuhong. Optical holographic data storage—The time for new development[J]. Opto-Electronic Engineering, 2019, 46(3): 1
    Download Citation