• Acta Optica Sinica
  • Vol. 41, Issue 13, 1306018 (2021)
Zhihong Li1、*, Xianxin Yang1, and Tuan Guo1
Author Affiliations
  • 1[in Chinese]
  • 12Institute of Photonics Technology, Jinan University, Guangzhou, Guangdong 511443, China
  • show less
    DOI: 10.3788/AOS202141.1306018 Cite this Article Set citation alerts
    Zhihong Li, Xianxin Yang, Tuan Guo. Thin-Film-Assisted Fiber-Optic Mode Transition and Polarization Modulation[J]. Acta Optica Sinica, 2021, 41(13): 1306018 Copy Citation Text show less
    References

    [1] Moskovits M. Surface-enhanced spectroscopy[J]. Reviews of Modern Physics, 57, 783-826(1985).

    [2] Polo J, Mackay T, Lakhtakia A. Electromagnetic surface waves: a modern perspective[M]. Amsterdam: Elsevier Science and Technology Books, 1-36(2013).

    [3] Xu Y, Bai P, Zhou X D et al. Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth[J]. Advanced Optical Materials, 7, 1801433(2019). http://onlinelibrary.wiley.com/doi/10.1002/adom.201801433

    [4] Xu Y, Zhang L, Tong L M. Optofluidic micro-nanofiber sensors[J]. Laser & Optoelectronics Progress, 56, 170614(2019).

    [5] Tan T, Yuan Z Y, Chen Y F et al. Graphene-based fiber functional sensors and laser devices[J]. Laser & Optoelectronics Progress, 56, 170613(2019).

    [6] Xing Z K, Song Q G, Mou C B et al. Linear polarized tunable fiber laser based on radiation mode of 45°-tilted fiber grating[J]. Chinese Journal of Lasers, 47, 1201007(2020).

    [7] Guo T. Review on plasmonic optical fiber grating biosensors[J]. Acta Optica Sinica, 38, 0328006(2018).

    [8] Zhao J, Wang Y, Wang Y P. Graphene-oxide-enhanced surface plasmon resonance fiber sensor[J]. Laser & Optoelectronics Progress, 56, 230601(2019).

    [9] Chen Q H, Han W Y, Kong X Y et al. Detection of solution refractive index variation based on optical fiber surface plasmon resonance[J]. Chinese Journal of Lasers, 47, 0804003(2020).

    [10] Piliarik M, Homola J. Surface plasmon resonance (SPR) sensors: approaching their limits?[J]. Optics Express, 17, 16505-16517(2009). http://www.opticsinfobase.org/abstract.cfm?id=185678

    [11] del Villar I, Arregui F J, Zamarreño C R et al. Optical sensors based on lossy-mode resonances[J]. Sensors and Actuators B: Chemical, 240, 174-185(2017).

    [12] Ozcariz A, Ruiz-Zamarreño C, Arregui F J. A comprehensive review: materials for the fabrication of optical fiber refractometers based on lossy mode resonance[J]. Sensors, 20, 1972(2020). http://www.researchgate.net/publication/340406541_A_Comprehensive_Review_Materials_for_the_Fabrication_of_Optical_Fiber_Refractometers_Based_on_Lossy_Mode_Resonance

    [13] del Villar I, Matías I R, Arregui F J et al. Optimization of sensitivity in long period fiber gratings with overlay deposition[J]. Optics Express, 13, 56-69(2005). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-1-56

    [14] del Villar I, Matias I R, Arregui F J et al. Nanodeposition of materials with complex refractive index in long-period fiber gratings[J]. Journal of Lightwave Technology, 23, 4192-4199(2005).

    [15] Cusano A, Iadicicco A, Pilla P et al. Cladding mode reorganization in high-refractive-index-coated long-period gratings: effects on the refractive-index sensitivity[J]. Optics Letters, 30, 2536-2538(2005).

    [16] Cusano A, Iadicicco A, Pilla P et al. Mode transition in high refractive index coated long period gratings[J]. Optics Express, 14, 19-34(2006).

    [17] Pilla P, Trono C, Baldini F et al. Giant sensitivity of long period gratings in transition mode near the dispersion turning point: an integrated design approach[J]. Optics Letters, 37, 4152-4154(2012). http://europepmc.org/abstract/MED/23027309

    [18] Bandyopadhyay S, del Villar I, Basumallick N et al. Long period fiber grating for biosensing: an improved design methodology to enhance add-layer sensitivity[J]. Journal of Lightwave Technology, 36, 1178-1184(2018). http://ieeexplore.ieee.org/document/8047093

    [19] Li Z H, Luo Q Q, Yan B T et al. Titanium dioxide film coated excessively tilted fiber grating for ultra-sensitive refractive index sensor[J]. Journal of Lightwave Technology, 36, 5285-5297(2018).

    [20] del Villar I. Ultrahigh-sensitivity sensors based on thin-film coated long period gratings with reduced diameter, in transition mode and near the dispersion turning point[J]. Optics Express, 23, 8389-8398(2015). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-23-7-8389

    [21] Gu Z T, Lan J L. Mode transition in absorption film coated long-period fiber grating and response characteristics of refractive index[J]. Acta Optica Sinica, 33, 0706003(2013).

    [22] Jiang X L, Gu Z T, Ling Q et al. Optimal design and experiments of coated dual-peak resonance long-period fiber grating refractive index sensing[J]. Chinese Journal of Lasers, 43, 0505003(2016).

    [23] Wang R L, Li Z H, Chen X et al. Mode splitting in ITO-nanocoated tilted fiber Bragg gratings for vector twist measurement[J]. Journal of Lightwave Technology, 99(2020). http://www.researchgate.net/publication/341953490_Mode_Splitting_in_ITO-nanocoated_Tilted_Fiber_Bragg_Gratings_for_Vector_Twist_Measurement

    [24] Born M, Wolf E[M]. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 58-74(1999).

    [25] Li Z H, Bao Q K, Zhu J Y et al. Generation of leaky mode resonance by metallic oxide nanocoating in tilted fiber-optic gratings[J]. Optics Express, 28, 9123-9135(2020). http://www.researchgate.net/publication/339639340_Generation_of_leaky_mode_resonance_by_metallic_oxide_nanocoating_in_tilted_fiber-optics_grating

    [26] Arregui F J, del Villar I, Zamarreño C R et al. Giant sensitivity of optical fiber sensors by means of lossy mode resonance[J]. Sensors and Actuators B: Chemical, 232, 660-665(2016).

    [27] Li Z H, Ruan X K, Dai Y X. Simultaneous excitation of leaky mode resonance and surface plasmon resonance in tilted fiber Bragg grating[J]. Applied Physics Express, 12, 112005(2019). http://iopscience.iop.org/article/10.7567/1882-0786/ab49a3

    [28] Lu Y C, Yang L, Huang W P et al. Improved full-vector finite-difference complex mode solver for optical waveguides of circular symmetry[J]. Journal of Lightwave Technology, 26, 1868-1876(2008). http://www.opticsinfobase.org/abstract.cfm?uri=jlt-26-13-1868

    [29] Li Z H, Chiavaioli F. In-fiber comb-like linear polarizer with leaky mode resonances[J]. Optics & Laser Technology, 133, 106518(2021). http://www.sciencedirect.com/science/article/pii/S0030399220311518

    [30] Lu Y C, Huang W P, Jian S S. Full vector complex coupled mode theory for tilted fiber gratings[J]. Optics Express, 18, 713-726(2010). http://europepmc.org/abstract/med/20173891

    Zhihong Li, Xianxin Yang, Tuan Guo. Thin-Film-Assisted Fiber-Optic Mode Transition and Polarization Modulation[J]. Acta Optica Sinica, 2021, 41(13): 1306018
    Download Citation