• Photonics Research
  • Vol. 13, Issue 1, 210 (2025)
Bo Han1,†, Chirag C. Palekar2,†, Frederik Lohof3, Sven Stephan1,4..., Victor N. Mitryakhin1, Jens-Christian Drawer1, Alexander Steinhoff3, Lukas Lackner1, Martin Silies1,4, Bárbara Rosa2, Martin Esmann1, Falk Eilenberger5,6,7, Christopher Gies1,8,*, Stephan Reitzenstein2,9,* and Christian Schneider1,10,*|Show fewer author(s)
Author Affiliations
  • 1Institut für Physik, Fakultät V, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
  • 2Institut für Festkörperphysik, Technische Universität Berlin, 10623 Berlin, Germany
  • 3Institute for Theoretical Physics and Bremen Center for Computational Material Science, Universität Bremen, 28359 Bremen, Germany
  • 4Institute for Lasers and Optics, Hochschule Emden/Leer, 26723 Emden, Germany
  • 5Fraunhofer-Institute for Applied Optics and Precision Engineering IOF, 07745 Jena, Germany
  • 6Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller Universität Jena, 07745 Jena, Germany
  • 7Max Planck School of Photonics, 07745 Jena, Germany
  • 8e-mail: christopher.gies@uni-oldenburg.de
  • 9e-mail: stephan.reitzenstein@physik.tu-berlin.de
  • 10e-mail: christian.schneider@uni-oldenburg.de
  • show less
    DOI: 10.1364/PRJ.540127 Cite this Article Set citation alerts
    Bo Han, Chirag C. Palekar, Frederik Lohof, Sven Stephan, Victor N. Mitryakhin, Jens-Christian Drawer, Alexander Steinhoff, Lukas Lackner, Martin Silies, Bárbara Rosa, Martin Esmann, Falk Eilenberger, Christopher Gies, Stephan Reitzenstein, Christian Schneider, "In situ spontaneous emission control of MoSe2-WSe2 interlayer excitons with high quantum yield," Photonics Res. 13, 210 (2025) Copy Citation Text show less
    References

    [1] P. A. M. Dirac. The quantum theory of the emission and absorption of radiation. Proc. R. Soc. London A, 114, 243-265(1927).

    [2] T. A. Welton. Some observable effects of the quantum-mechanical fluctuations of the electromagnetic field. Phys. Rev., 74, 1157-1167(1948).

    [3] P. W. Milonni. Why spontaneous emission?. Am. J. Phys., 52, 340-343(1984).

    [4] H. Yokoyama, K. Ujihara. Spontaneous Emission and Laser Oscillation in Microcavities, 10(1995).

    [5] E. Fermi. Nuclear Physics: A Course Given by Enrico Fermi at the University of Chicago(1950).

    [6] E. M. Purcell. B10: spontaneous emission probabilities at radio frequencies. Proc. Am. Phys. Soc., 69, 681(1946).

    [7] P. Goy, J. M. Raimond, M. Gross. Observation of cavity-enhanced single-atom spontaneous emission. Phys. Rev. Lett., 50, 1903-1906(1983).

    [8] W. Jhe, A. Anderson, E. A. Hinds. Suppression of spontaneous decay at optical frequencies: test of vacuum-field anisotropy in confined space. Phys. Rev. Lett., 58, 666-669(1987).

    [9] D. Kleppner. Inhibited spontaneous emission. Phys. Rev. Lett., 47, 233-236(1981).

    [10] J.-M. Gérard, B. Sermage, B. Gayral. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Phys. Rev. Lett., 81, 1110-1113(1998).

    [11] J.-M. Gérard, B. Gayral. InAs quantum dots: artificial atoms for solid-state cavity-quantum electrodynamics. Physica E, 9, 131-139(2001).

    [12] G. Wang, A. Chernikov, M. M. Glazov. Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys., 90, 021001(2018).

    [13] K. F. Mak, C. Lee, J. Hone. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett., 105, 136805(2010).

    [14] A. Chernikov, T. C. Berkelbach, H. M. Hill. Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2. Phys. Rev. Lett., 113, 076802(2014).

    [15] Y. Li, A. Chernikov, X. Zhang. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B, 90, 205422(2014).

    [16] C. Schneider, M. M. Glazov, T. Korn. Two-dimensional semiconductors in the regime of strong light-matter coupling. Nat. Commun., 9, 2695(2018).

    [17] A. K. Geim, I. V. Grigorieva. Van der waals heterostructures. Nature, 499, 419-425(2013).

    [18] K. L. Seyler, P. Rivera, H. Yu. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature, 567, 66-70(2019).

    [19] K. Tran, G. Moody, F. Wu. Evidence for moiré excitons in van der waals heterostructures. Nature, 567, 71-75(2019).

    [20] Y. Tang, J. Gu, S. Liu. Tuning layer-hybridized moiré excitons by the quantum-confined stark effect. Nat. Nanotechnol., 16, 52-57(2021).

    [21] W. Li, X. Lu, S. Dubey. Dipolar interactions between localized interlayer excitons in van der waals heterostructures. Nat. Mater., 19, 624-629(2020).

    [22] P. Rivera, J. R. Schaibley, A. M. Jones. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun., 6, 6242(2015).

    [23] H. H. Fang, B. Han, C. Robert. Control of the exciton radiative lifetime in van der waals heterostructures. Phys. Rev. Lett., 123, 067401(2019).

    [24] J. Choi, M. Florian, A. Steinhoff. Twist angle-dependent interlayer exciton lifetimes in van der waals heterostructures. Phys. Rev. Lett., 126, 047401(2021).

    [25] E. Y. Paik, L. Zhang, G. W. Burg. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature, 576, 80-84(2019).

    [26] C. Qian, M. Troue, J. Figueiredo. Lasing of moiré trapped MoSe2/WSe2 interlayer excitons coupled to a nanocavity. Sci. Adv., 10, eadk6359(2024).

    [27] Y. Liu, H. Fang, A. Rasmita. Room temperature nanocavity laser with interlayer excitons in 2D heterostructures. Sci. Adv., 5, eaav4506(2019).

    [28] S. Zhao, Z. Li, X. Huang. Excitons in mesoscopically reconstructed moiré heterostructures. Nat. Nanotechnol., 18, 572-579(2023).

    [29] F. Cadiz, E. Courtade, C. Robert. Excitonic linewidth approaching the homogeneous limit in MoS2-based van der waals heterostructures. Phys. Rev. X, 7, 021026(2017).

    [30] A. Raja, L. Waldecker, J. Zipfel. Dielectric disorder in two-dimensional materials. Nat. Nanotechnol., 14, 832-837(2019).

    [31] E. Wietek, M. Florian, J. Göser. Nonlinear and negative effective diffusivity of interlayer excitons in moiré-free heterobilayers. Phys. Rev. Lett., 132, 016202(2024).

    [32] H. Cai, A. Rasmita, R. He. Charge-depletion-enhanced WSe2 quantum emitters on gold nanogap arrays with near-unity quantum efficiency. Nat. Photonics, 18, 842-847(2024).

    [33] J. Scherzer, L. Lackner, B. Han. Correlated magnetism of moiré exciton-polaritons on a triangular electron-spin lattice(2024).

    [34] J.-C. Drawer, V. N. Mitryakhin, H. Shan. Monolayer-based single-photon source in a liquid-helium-free open cavity featuring 65% brightness and quantum coherence. Nano Lett., 23, 8683-8689(2023).

    [35] H. Fang, Q. Lin, Y. Zhang. Localization and interaction of interlayer excitons in MoSe2/WSe2 heterobilayers. Nat. Commun., 14, 6910(2023).

    [36] H. Kim, K. Aino, K. Shinokita. Dynamics of moiré exciton in a twisted MoSe2/WSe2 heterobilayer. Adv. Opt. Mater., 11, 2300146(2023).

    [37] Y. Jiang, S. Chen, W. Zheng. Interlayer exciton formation, relaxation, and transport in TMD van der waals heterostructures. Light Sci. Appl., 10, 72(2021).

    [38] K. Drexhage. Influence of a dielectric interface on fluorescence decay time. J. Lumin., 1, 693-701(1970).

    [39] M. D. Leistikow, J. Johansen, A. J. Kettelarij. Size-dependent oscillator strength and quantum efficiency of CDSE quantum dots controlled via the local density of states. Phys. Rev. B, 79, 045301(2009).

    [40] F. Albert, S. Stobbe, C. Schneider. Quantum efficiency and oscillator strength of site-controlled InAs quantum dots. Appl. Phys. Lett., 96, 151102(2010).

    [41] S. Reitzenstein, C. Schneider, F. Albert. Cavity quantum electrodynamics studies with site-controlled InGaAs quantum dots integrated into high quality microcavities. Proc. SPIE, 7947, 794702(2011).

    [42] Y. Zhou, G. Scuri, J. Sung. Controlling excitons in an atomically thin membrane with a mirror. Phys. Rev. Lett., 124, 027401(2020).

    [43] C. Rogers, D. Gray, N. Bogdanowicz. Coherent feedback control of two-dimensional excitons. Phys. Rev. Res., 2, 012029(2020).

    [44] J. Horng, Y.-H. Chou, T.-C. Chang. Engineering radiative coupling of excitons in 2D semiconductors. Optica, 6, 1443-1448(2019).

    [45] N. Nikolay, N. Mendelson, E. Özelci. Direct measurement of quantum efficiency of single-photon emitters in hexagonal boron nitride. Optica, 6, 1084-1088(2019).

    [46] P. Rivera, T. K. Fryett, Y. Chen. Coupling of photonic crystal cavity and interlayer exciton in heterobilayer of transition metal dichalcogenides. 2D Mater., 7, 015027(2019).

    [47] H. Yu, G.-B. Liu, W. Yao. Brightened spin-triplet interlayer excitons and optical selection rules in van der waals heterobilayers. 2D Mater., 5, 035021(2018).

    [48] L. Zhang, R. Gogna, G. W. Burg. Highly valley-polarized singlet and triplet interlayer excitons in van der waals heterostructure. Phys. Rev. B, 100, 041402(2019).

    [49] L. Sigl, M. Troue, M. Katzer. Optical dipole orientation of interlayer excitons in MoSe2-WSe2 heterostacks. Phys. Rev. B, 105, 035417(2022).

    [50] E. Barré, O. Karni, E. Liu. Optical absorption of interlayer excitons in transition-metal dichalcogenide heterostructures. Science, 376, 406-410(2022).

    [51] M. A. May, T. Jiang, C. Du. Nanocavity clock spectroscopy: resolving competing exciton dynamics in WSe2/MoSe2 heterobilayers. Nano Lett., 21, 522-528(2020).

    [52] M. Förg, L. Colombier, R. K. Patel. Cavity-control of interlayer excitons in van der Waals heterostructures. Nat. Commun., 10, 3697(2019).

    [53] B. Miller, A. Steinhoff, B. Pano. Long-lived direct and indirect interlayer excitons in van der waals heterostructures. Nano Lett., 17, 5229-5237(2017).

    [54] H. Baek, M. Brotons-Gisbert, Z. X. Koong. Highly energy-tunable quantum light from moiré-trapped excitons. Sci. Adv., 6, eaba8526(2020).

    [55] X. Sun, Y. Zhu, H. Qin. Enhanced interactions of interlayer excitons in free-standing heterobilayers. Nature, 610, 478-484(2022).

    [56] A. Castellanos-Gomez, M. Buscema, R. Molenaar. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater., 1, 011002(2014).

    [57] D. Schmitt, J. P. Bange, W. Bennecke. Formation of moiré interlayer excitons in space and time. Nature, 608, 499-503(2022).

    [58] D. Schmitt, J. P. Bange, W. Bennecke. Ultrafast nano-imaging of dark excitons(2023).

    [59] M. Kira, F. Jahnke, W. Hoyer. Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures. Prog. Quantum Electron., 23, 189-279(1999).

    [60] S. Stobbe, J. Johansen, P. T. Kristensen. Frequency dependence of the radiative decay rate of excitons in self-assembled quantum dots: experiment and theory. Phys. Rev. B, 80, 155307(2009).

    [61] W. L. Barnes, S. A. R. Horsley, W. L. Vos. Classical antennas, quantum emitters, and densities of optical states. J. Opt., 22, 073501(2020).

    [62] H. Yu, Y. Wang, Q. Tong. Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers. Phys. Rev. Lett., 115, 187002(2015).

    [63] J. S. Ross, P. Rivera, J. Schaibley. Interlayer exciton optoelectronics in a 2D heterostructure p–n junction. Nano Lett., 17, 638-643(2017).

    Bo Han, Chirag C. Palekar, Frederik Lohof, Sven Stephan, Victor N. Mitryakhin, Jens-Christian Drawer, Alexander Steinhoff, Lukas Lackner, Martin Silies, Bárbara Rosa, Martin Esmann, Falk Eilenberger, Christopher Gies, Stephan Reitzenstein, Christian Schneider, "In situ spontaneous emission control of MoSe2-WSe2 interlayer excitons with high quantum yield," Photonics Res. 13, 210 (2025)
    Download Citation