• Photonics Research
  • Vol. 13, Issue 1, 210 (2025)
Bo Han1,†, Chirag C. Palekar2,†, Frederik Lohof3, Sven Stephan1,4..., Victor N. Mitryakhin1, Jens-Christian Drawer1, Alexander Steinhoff3, Lukas Lackner1, Martin Silies1,4, Bárbara Rosa2, Martin Esmann1, Falk Eilenberger5,6,7, Christopher Gies1,8,*, Stephan Reitzenstein2,9,* and Christian Schneider1,10,*|Show fewer author(s)
Author Affiliations
  • 1Institut für Physik, Fakultät V, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
  • 2Institut für Festkörperphysik, Technische Universität Berlin, 10623 Berlin, Germany
  • 3Institute for Theoretical Physics and Bremen Center for Computational Material Science, Universität Bremen, 28359 Bremen, Germany
  • 4Institute for Lasers and Optics, Hochschule Emden/Leer, 26723 Emden, Germany
  • 5Fraunhofer-Institute for Applied Optics and Precision Engineering IOF, 07745 Jena, Germany
  • 6Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller Universität Jena, 07745 Jena, Germany
  • 7Max Planck School of Photonics, 07745 Jena, Germany
  • 8e-mail: christopher.gies@uni-oldenburg.de
  • 9e-mail: stephan.reitzenstein@physik.tu-berlin.de
  • 10e-mail: christian.schneider@uni-oldenburg.de
  • show less
    DOI: 10.1364/PRJ.540127 Cite this Article Set citation alerts
    Bo Han, Chirag C. Palekar, Frederik Lohof, Sven Stephan, Victor N. Mitryakhin, Jens-Christian Drawer, Alexander Steinhoff, Lukas Lackner, Martin Silies, Bárbara Rosa, Martin Esmann, Falk Eilenberger, Christopher Gies, Stephan Reitzenstein, Christian Schneider, "In situ spontaneous emission control of MoSe2-WSe2 interlayer excitons with high quantum yield," Photonics Res. 13, 210 (2025) Copy Citation Text show less

    Abstract

    Optical resonators are a powerful platform to control the spontaneous emission dynamics of excitons in solid-state nanostructures. We study a MoSe2-WSe2 heterostructure that is integrated in a cryogenic open optical microcavity to gain insights into fundamental optical properties of the emergent interlayer excitons. First, we utilize a low-quality-factor planar open cavity and investigate the modification of the excitonic lifetime as on- and off-resonance conditions are met with consecutive longitudinal modes. Time-resolved photoluminescence measurements revealed a periodic tuning of the interlayer exciton lifetime by 220 ps, which allows us to extract a 0.5 ns free-space radiative lifetime and a quantum efficiency as high as 81.4%±1.4%. We subsequently engineer the local density of optical states by spatially confined and spectrally tunable Tamm-plasmon resonances. The dramatic redistribution of the local optical modes allows us to encounter a significant inhibition of the excitonic spontaneous emission rate by a factor of 3.2. Our open cavity is able to tune the cavity resonances accurately to the emitters to have a robust in situ control of the light-matter coupling. Such a powerful characterization approach can be universally applied to tune the exciton dynamics and measure the quantum efficiencies of more complex van der Waals heterostructures and devices.
    FP=3n38nfreeσ,τ0π/2dθsin(θ)|uθσ,τ(z)·e|2FM(θ).

    View in Article

    [2n2(r)c22t2]A(r,t)=0,(B1)

    View in Article

    d3rn2(r)Uqσ*(r)·Uqσ(r)=δq,qδσ,σ.(B2)

    View in Article

    [2+|q|2n2(r)]Uqσ(r)=0.(B3)

    View in Article

    {d2dz2+[|q|2n2(z)|q|2]}uqσ(z)=0.(B4)

    View in Article

    uqσ(z)=εσ(Ajeiqjz+Bjeiqjz)(B5)

    View in Article

    n1sin(θ1)=n2sin(θ2),(B6)

    View in Article

    n×(E1E2)=0,(B7)

    View in Article

    n×(H1H2)=0,(B8)

    View in Article

    n·(D1D2)=0,(B9)

    View in Article

    n·(B1B2)=0,(B10)

    View in Article

    SUqσ(r)=εs(Ajeiqjz+Bjeiqjz)eiq·r=(0Ajeiqjz+Bjeiqjz0)eiq·r(B11)

    View in Article

    S×Uqσ(r)=(iqjAjeiqjz+iqjBjeiqjz0iqxAjeiqjz+iqxBjeiqjz)eiq·r.(B12)

    View in Article

    SUqσ(r)=(εp+Ajeiqjz+εpBjeiqjz)eiq·r=(cos(θj)(AjeiqjzBjeiqjz)0sin(θj)(Ajeiqjz+Bjeiqjz))eiq·r(B13)

    View in Article

    n2(r)SUqσ(r)=n2(r)(εp+Ajeiqjz+εpBjeiqjz)eiq·r=(nj2cos(θj)(AjeiqjzBjeiqjz)0nj2sin(θj)(Ajeiqjz+Bjeiqjz))eiq·r(B14)

    View in Article

    0=Ajeiqjzj+BjeiqjzjAj+1eiqj+1zjBj+1eiqj+1zj,(B15)

    View in Article

    0=qjAjeiqjzjqjBjeiqjzjqj+1Aj+1eiqj+1zj+qj+1Bj+1eiqj+1zj,(B16)

    View in Article

    b=(A0eiq0z0,A0q0eiq0z0,0,0,,0,0,BN+1eiqN+1zN,BN+1qN+1eiqN+1zN),(B17)

    View in Article

    (w0v0+v0000000q0w0q1v0+q1v00000000w1+w1v1+v100000q1w1+q1w1q2v1+q2v10000000w2+w2v2+v200000q2w2+q2w2q3v2+q3v200000000wN+wNvN+000000qNwN+qNwNqN+1vN+).(B18)

    View in Article

    0=cos(θj)(AjeiqjzjBjeiqjzj)cos(θj+1)(Aj+1eiqj+1zjBj+1eiqj+1zj),(B19)

    View in Article

    0=nj(Ajeiqjzj+Bjeiqjzj)nj+1(Aj+1eiqj+1zj+Bj+1eiqj+1zj).(B20)

    View in Article

    Aq=Ln/2Ln/2dzn(z)2|uqσ(z)|2.(B21)

    View in Article

    |ψ=ce(t)|c|0+μcμ(t)|v|1μ,(C1)

    View in Article

    c˙e(t)=q22m02ε0|c|p|v|20tdtce(t)×dωρ(r0,ω)ωei(ωω0)(tt).(C2)

    View in Article

    Γr=q2πm02ε0|c|p|v|2ρ(r0,ω0)ω0,(C3)

    View in Article

    ρ(r0,ω0)=μ|Uμ(r)·e|2δ(ωωμ),μ=(q,qz,σ).(C4)

    View in Article

    Γr(ω0,r)μ|Uμ(r)·e|2δ(ωμω0),μ=(q,qz,σ).(C5)

    View in Article

    Uμ(r)=1Luqσ(z)1Seiq·r.(C6)

    View in Article

    Γcav(ω0,r)μ|Uμ(r)·e|2δ(ωμω0)FM(q).(C7)

    View in Article

    μ|Uμ(r)·e|2δ(ωμω0)FM(q)=1Sq,σ12πdqz|uμ(z)·e|2×δ(cn|q|2+qz2cnq0)FM(q)=1Sq,σ,τn2πc|uq,qzτσ·e|2q0q02q2θ(|q0||q|)FM(q).(C8)

    View in Article

    δ[g(x)]=xiδ(xxi)|g(xi)|forg(xi)=0,(C9)

    View in Article

    σ,τn(2π)3c02πdφ0q0dq|uq,qzτσ(z)·e|2q0qq02q2FM(q)=σ,τnq024π2c0π/2dθsin(θ)|uq,qzτσ(z)·e|2FM[q0sin(θ)]=σ,τn3ω024π2c30π/2dθsin(θ)|uq0sin(θ),q0τcos(θ)σ(z)·e|2×FM[q0sin(θ)],(C10)

    View in Article

    uq,qzτσ(z)=1nfree2e±iqzzεσ,(C11)

    View in Article

    Γ0(ω0)nfreeω022π2c30π/2dθsin(θ)[1+cos2(θ)]=23nfreeω02π2c3.(C12)

    View in Article

    Γcav(r,ω0)Γ0(ω0)=3n38nfreeσ,τ0π/2dθsin(θ)|uθσ,τ(z)·e|2FM(θ),(C13)

    View in Article

    Bo Han, Chirag C. Palekar, Frederik Lohof, Sven Stephan, Victor N. Mitryakhin, Jens-Christian Drawer, Alexander Steinhoff, Lukas Lackner, Martin Silies, Bárbara Rosa, Martin Esmann, Falk Eilenberger, Christopher Gies, Stephan Reitzenstein, Christian Schneider, "In situ spontaneous emission control of MoSe2-WSe2 interlayer excitons with high quantum yield," Photonics Res. 13, 210 (2025)
    Download Citation