• Acta Optica Sinica
  • Vol. 44, Issue 2, 0214001 (2024)
Jixing Gao1、2, Zhiyuan Lou1、2, Fan Yang1、2, Xiaojun Yang1, Yi Xu1、2, Yuxin Leng1、2, Yinghui Zheng3、*, Zhinan Zeng3, and Ruxin Li1、2、3
Author Affiliations
  • 1State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Zhangjiang Laboratory, Shanghai 201210, China
  • show less
    DOI: 10.3788/AOS231482 Cite this Article Set citation alerts
    Jixing Gao, Zhiyuan Lou, Fan Yang, Xiaojun Yang, Yi Xu, Yuxin Leng, Yinghui Zheng, Zhinan Zeng, Ruxin Li. High-Energy High-Order Harmonic Generation Around 13 nm Wavelength Based on Hundred-Terawatt-Level Laser System[J]. Acta Optica Sinica, 2024, 44(2): 0214001 Copy Citation Text show less
    References

    [1] Mairesse Y, Bohan A D, Frasinski L J et al. Attosecond synchronization of high-harmonic soft X-rays[J]. Science, 302, 1540-1543(2003).

    [2] Dai C, Wang Y, Miao Z M et al. Generation and application of high-order harmonics based on interaction between femtosecond laser and matter[J]. Laser & Optoelectronics Progress, 58, 0300001(2021).

    [3] Labat M, Bellaveglia M, Bougeard M et al. High-gain harmonic-generation free-electron laser seeded by harmonics generated in gas[J]. Physical Review Letters, 107, 224801(2011).

    [4] Zeitoun P, Faivre G, Sebban S et al. A high-intensity highly coherent soft X-ray femtosecond laser seeded by a high harmonic beam[J]. Nature, 431, 426-429(2004).

    [5] Sie E J, Rohwer T, Lee C M et al. Time-resolved XUV ARPES with tunable 24-33 eV laser pulses at 30 meV resolution[J]. Nature Communications, 10, 3535(2019).

    [6] Tanksalvala M, Porter C L, Esashi Y et al. Nondestructive, high-resolution, chemically specific 3D nanostructure characterization using phase-sensitive EUV imaging reflectometry[J]. Science Advances, 7, eabd9667(2021).

    [7] Hettel R. DLSR design and plans: an international overview[J]. Journal of Synchrotron Radiation, 21, 843-855(2014).

    [8] Elias L R, Fairbank W M, Madey J M J et al. Observation of stimulated emission of radiation by relativistic electrons in a spatially periodic transverse magnetic field[J]. Physical Review Letters, 36, 717-720(1976).

    [9] Wang W T, Feng K, Ke L T et al. Free-electron lasing at 27 nanometres based on a laser Wakefield accelerator[J]. Nature, 595, 516-520(2021).

    [10] Qi Z, Huang N S, Deng H X et al. Performance parameters and stability studies on FEL-III beamline of Shanghai high repetition rate XFEL and extreme light facility[J]. Acta Optica Sinica, 42, 1134016(2022).

    [11] Matthews D L, Hagelstein P L, Rosen M D et al. Demonstration of a soft X-ray amplifier[J]. Physical Review Letters, 54, 110-113(1985).

    [12] Key M H. Laboratory production of X-ray lasers[J]. Nature, 316, 314-319(1985).

    [13] Cerjan C. Spectral characterization of a Sn soft X-ray plasma source[J]. Journal of Applied Physics, 76, 3332-3336(1994).

    [14] Ditmire T, Gumbrell E T, Smith R A et al. Spatial coherence measurement of soft X-ray radiation produced by high order harmonic generation[J]. Physical Review Letters, 77, 4756-4759(1996).

    [15] Popmintchev T, Chen M C, Arpin P et al. The attosecond nonlinear optics of bright coherent X-ray generation[J]. Nature Photonics, 4, 822-832(2010).

    [16] Popmintchev D, Hernández-García C, Dollar F et al. Ultraviolet surprise: efficient soft X-ray high-harmonic generation in multiply ionized plasmas[J]. Science, 350, 1225-1231(2015).

    [17] Bartels R A, Paul A, Green H et al. Generation of spatially coherent light at extreme ultraviolet wavelengths[J]. Science, 297, 376-378(2002).

    [18] Popmintchev T, Chen M C, Popmintchev D et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers[J]. Science, 336, 1287-1291(2012).

    [19] Zhang X, Libertun A R, Paul A et al. Highly coherent light at 13 nm generated by use of quasi-phase-matched high-harmonic generation[J]. Optics Letters, 29, 1357-1359(2004).

    [20] Lewenstein M, Balcou P, Ivanov M Y et al. Theory of high-harmonic generation by low-frequency laser fields[J]. Physical Review A, 49, 2117-2132(1994).

    [21] Milosevic N, Scrinzi A, Brabec T. Numerical characterization of high harmonic attosecond pulses[J]. Physical Review Letters, 88, 093905(2002).

    [22] Takahashi E J, Nabekawa Y, Midorikawa K. Low-divergence coherent soft X-ray source at 13 nm by high-order harmonics[J]. Applied Physics Letters, 84, 4-6(2004).

    [23] Rudawski P, Heyl C M, Brizuela F et al. A high-flux high-order harmonic source[J]. Review of Scientific Instruments, 84, 073103(2013).

    [24] Wang Y, Guo T Y, Li J L et al. Enhanced high-order harmonic generation driven by a wavefront corrected high-energy laser[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 51, 134005(2018).

    [25] Li J L, Wang Y, Guo T Y et al. Beam optimization in a 25 TW femtosecond laser system for high harmonic generation[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 53, 145602(2020).

    [26] Xu Y, Lu J, Li W K et al. A Stable 200 TW/1 Hz Ti: sapphire laser for driving full coherent XFEL[J]. Optics & Laser Technology, 79, 141-145(2016).

    [27] Ranc S, Chériaux G, Ferré S et al. Importance of spatial quality of intense femtosecond pulses[J]. Applied Physics B, 70, S181-S187(2000).

    [28] Zhang L Y, Zheng Y H, Li G C et al. Bright high-order harmonic generation around 30 nm using hundred-terawatt-level laser system for seeding full coherent XFEL[J]. Applied Sciences, 8, 1446(2018).

    [29] Lou Z Y, Zheng Y H, Zhang L Y et al. Bright high harmonic generation around 30 nm and 10 nm for seeding full coherent XFEL[J]. Proceedings of SPIE, 11056, 110562M(2019).

    [30] Wang Z S, Huang Q S, Zhang Z et al. Extreme ultraviolet, X-ray and neutron thin film optical components and systems[J]. Acta Optica Sinica, 41, 0131001(2021).

    [31] Bogachev S A, Chkhalo N I, Kuzin S V et al. Advanced materials for multilayer mirrors for extreme ultraviolet solar astronomy[J]. Applied Optics, 55, 2126-2135(2016).

    [32] Ichimaru S, Hatayama M, Ohchi T et al. Mo/Si multilayer mirrors with 300-bilayers for EUV lithography[J]. Proceedings of SPIE, 9658, 965814(2015).

    [33] Ii O W, Wong K, Parks V et al. Improved Ru/Si multilayer reflective coatings for advanced extreme-ultraviolet lithography photomasks[J]. Proceedings of SPIE, 9776, 977619(2016).

    [34] Constant E, Garzella D, Breger P et al. Optimizing high harmonic generation in absorbing gases: model and experiment[J]. Physical Review Letters, 82, 1668-1671(1999).

    [35] Takahashi E J, Nabekawa Y, Mashiko H et al. Generation of strong optical field in soft X-ray region by using high-order harmonics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 10, 1315-1328(2004).

    [36] Henke B L, Gullikson E M, Davis J C. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30,000 eV, Z=1-92[J]. Atomic Data and Nuclear Data Tables, 54, 181-342(1993).

    [37] Hernández-García C, Sola I J, Plaja L. Signature of the transversal coherence length in high-order harmonic generation[J]. Physical Review A, 88, 043848(2013).

    [38] Durfee C G, Rundquist A R, Backus S et al. Phase matching of high-order harmonics in hollow waveguides[J]. Physical Review Letters, 83, 2187-2190(1999).

    [39] Takahashi E, Nabekawa Y, Midorikawa K. Generation of 10-µJ coherent extreme-ultraviolet light by use of high-order harmonics[J]. Optics Letters, 27, 1920-1922(2002).

    [40] Takahashi E, Tosa V, Nabekawa Y et al. Experimental and theoretical analyses of a correlation between pump-pulse propagation and harmonic yield in a long-interaction medium[J]. Physical Review A, 68, 023808(2003).

    [41] Physical Measurement Laboratory, National Institute of Standards and Technology, U.S. Department of Commerce. Elemental data index[EB/OL]. https://physics.nist.gov/cgi-bin/Elements/elInfo.pl?element=10&context=frames

    [42] Corkum P B. Plasma perspective on strong field multiphoton ionization[J]. Physical Review Letters, 71, 1994-1997(1993).

    [43] Salières P, L'Huillier A, Lewenstein M. Coherence control of high-order harmonics[J]. Physical Review Letters, 74, 3776-3779(1995).

    [44] He X K, Miranda M, Schwenke J et al. Spatial and spectral properties of the high-order harmonic emission in argon for seeding applications[J]. Physical Review A, 79, 063829(2009).

    [45] Hu Y W, Liu X, Kuang C F et al. Research progress and prospect of adaptive optics based on deep learning[J]. Chinese Journal of Lasers, 50, 1101009(2023).

    Jixing Gao, Zhiyuan Lou, Fan Yang, Xiaojun Yang, Yi Xu, Yuxin Leng, Yinghui Zheng, Zhinan Zeng, Ruxin Li. High-Energy High-Order Harmonic Generation Around 13 nm Wavelength Based on Hundred-Terawatt-Level Laser System[J]. Acta Optica Sinica, 2024, 44(2): 0214001
    Download Citation