• Laser & Optoelectronics Progress
  • Vol. 56, Issue 8, 080003 (2019)
Yi Lu1, Xiaohai Bu1、2、*, Dongxian Li1, Feiyou Liu1, and Zewu Zhang1、2
Author Affiliations
  • 1 School of Materials Engineering, Nanjing Institute of Technology, Nanjing, Jiangsu 211167, China
  • 2 Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing, Jiangsu 211167, China
  • show less
    DOI: 10.3788/LOP56.080003 Cite this Article Set citation alerts
    Yi Lu, Xiaohai Bu, Dongxian Li, Feiyou Liu, Zewu Zhang. Research Progress of Infrared Stealth Materials Based on Photonic Crystals[J]. Laser & Optoelectronics Progress, 2019, 56(8): 080003 Copy Citation Text show less
    References

    [1] Stein A, Wilson B E, Rudisill S G. Design and functionality of colloidal-crystal-templated materials-chemical applications of inverse opals[J]. Chemical Society Reviews, 42, 2763-2803(2013).

    [2] Cong H L, Yu B, Tang J G et al. Current status and future developments in preparation and application of colloidal crystals[J]. Chemical Society Reviews, 42, 7774-7800(2013). http://europepmc.org/abstract/med/23836297

    [3] Moghadam R Z, Ahmadvand H, Jannesari M. Design and fabrication of multi-layers infrared antireflection coating consisting of ZnS and Ge on ZnS substrate[J]. Infrared Physics & Technology, 75, 18-21(2016). http://www.sciencedirect.com/science/article/pii/S1350449515301432

    [4] Armstrong E. O'Dwyer C. Artificial opal photonic crystals and inverse opal structures-fundamentals and applications from optics to energy storage[J]. Journal of Materials Chemistry C, 3, 6109-6143(2015). http://www.researchgate.net/publication/277023904_Artificial_Opal_Photonic_Crystals_and_Inverse_Opal_Structures_Fundamentals_and_Applications_from_Optics_to_Energy_Storage

    [5] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 58, 2059-2062(1987). http://www.ncbi.nlm.nih.gov/pubmed/10034639?dopt=Abstract

    [6] Fink Y, Winn J N, Fan S. et al. A dielectric omnidirectional reflector[J]. Science, 282, 1679-1682(1998).

    [7] Wu C J, Chu B H, Weng M T et al. Enhancement of bandwidth in a chirped quarter-wave dielectric mirror[J]. Journal of Electromagnetic Waves and Applications, 23, 437-447(2009). http://www.tandfonline.com/doi/abs/10.1163/156939309787612365

    [8] Lee H M. 107(9): 09E149[J]. Wu J C. Transmittance spectra in one-dimensional superconductor-dielectric photonic crystal. Journal of Applied Physics(2010).

    [9] Hsu H T, Kuo F Y, Wu C J. Optical properties of a high-temperature superconductor operating in near zero-permittivity region[J]. Journal of Applied Physics, 107, 053912(2010). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5430792

    [10] Wu C J, Liu C L, Kuo W K. Analysis of thickness-dependent optical properties in a one-dimensional superconducting photonic crystal[J]. Journal of Electromagnetic Waves & Applications, 23, 1113-1122(2009). http://www.tandfonline.com/doi/abs/10.1163/156939309789023547

    [11] Krokhin A A, Reyes E, Gumen L. Low-frequency index of refraction for a two-dimensional metallodielectric photonic crystal[J]. Physical Review B, 75, 045131(2007). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000015000006000052000001&idtype=cvips&gifs=Yes

    [12] Pimenov A, Loidl A, Pimenov A. et al. Conductivity and permittivity of two-dimensional metallic photonic crystals[J]. Physical Review Letters, 96, 063903(2006). http://www.ncbi.nlm.nih.gov/pubmed/16605997

    [13] Zi J, Wan J, Zhang C. Large frequency range of negligible transmission in one-dimensional photonic quantum well structures[J]. Applied Physics Letters, 73, 2084-2086(1998). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4899120

    [14] Srivastava R, Pati S, Ojha S P. Enhancement of omnidirectional reflection in photonic crystal heterostructures[J]. Progress in Electromagnetics Research B, 1, 197-208(2008).

    [15] Liu Y Y, Li X F, Zhao Y L et al. Influence of defect modes of metal films on filtering characteristics of one-dimensional photonic crystals[J]. Laser & Optoelectronics Progress, 55, 053103(2018).

    [16] Eissa M F, Aly A H. Improve the efficiency of scintillation detectors using reflectors based on photonic crystals arrays[J]. Journal of Electromagnetic Analysis and Applications, 6, 25-29(2014).

    [17] Ramanujam N R. Wilson K S J. Optical properties of silver nanocomposites and photonic band gap: Pressure dependence[J]. Optics Communications, 368, 174-179(2016). http://adsabs.harvard.edu/abs/2016OptCo.368..174R

    [18] Dai X Y, Xiang Y J, Wen S C. Broad omnidirectional reflector in the one-dimensional ternary photonic crystals containing superconductor[J]. Progress in Electromagnetics Research, 120, 17-34(2011).

    [19] Amri R, Sahel S, Gamra D et al. Photonic band gap and defects modes in inorganic/organic photonic crystal based on Si and HMDSO layers deposited by sputtering and PECVD[J]. Optical Materials, 76, 222-230(2018).

    [20] Kang Y Q, Liu H M. Wideband absorption in one dimensional photonic crystal with graphene-based hyperbolic metamaterials[J]. Superlattices and Microstructures, 114, 355-360(2018).

    [21] Hung H C, Wu C J, Yang T J et al. Enhancement of near-infrared photonic band gap in a doped semiconductor photonic crystal[J]. Progress in Electromagnetics Research, 125, 219-235(2012).

    [22] Zhang W G, Xu G Y, Zhang J C et al. Infrared spectrally selective low emissivity from Ge/ZnS one-dimensional heterostructure photonic crystal[J]. Optical Materials, 37, 343-346(2014).

    [23] Li K W, Li X C, Chen P A et al. High reflector designed with one-dimensional photonic crystal in 3-5 μm infrared region based on hetero-structure[J]. Acta Optica Sinica, 38, 0922001(2018).

    [24] Zhao D P, Shi J M, Wang J C et al. Design on a dual-band omnidirectional reflector of MWIR and LWIR[J]. Laser & Infrared, 38, 454-457(2008).

    [25] Liu B L, Shi J M, Zhao D P et al. A kind of infrared camouflage material based on photonic crystals[J]. Infrared Technology, 30, 512-515(2008).

    [26] Ho C P, Pitchappa P, Kropelnicki P et al. Development of polycrystalline silicon based photonic crystal membrane for mid-infrared applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 94-100(2014).

    [27] He X, Li H, Zhu Z Y et al. Strain engineering in monolayer WS2, MoS2, and the WS2/MoS2 heterostructure[J]. Applied Physics Letters, 109, 173105(2016).

    [28] Wang Q C, Wang J C, Zhao D P et al. Investigation of terahertz waves propagating through far infrared/CO2 laser stealth-compatible coating based on one-dimensional photonic crystal[J]. Infrared Physics & Technology, 79, 144-150(2016).

    [29] Wang C, Wang L, Chen Z H et al. Production of flexible photonic crystal films for compatible far infrared and laser-band camouflage by vacuum coating method[J]. Journal of Russian Laser Research, 37, 308-312(2016).

    [30] Miao L, Shi J M, Wang J C et al. Heterogeneous doped one-dimensional photonic crystal with low emissivity in infrared atmospheric window[J]. Optical Engineering, 55, 057101(2016).

    [31] Zhang J K, Shi J M, Miao L et al. Research on compatible stealth photonic crystal against near/middle infrared and 1.06 μm and 1.54 μm lasers[J]. Chinese Journal of Luminescence, 37, 1130-1134(2016).

    [32] Wang Z X, Cheng Y Z, Nie Y et al. Design and realization of one-dimensional double hetero-structure photonic crystals for infrared-radar stealth-compatible materials applications[J]. Journal of Applied Physics, 116, 054905(2014).

    [33] Zhang J K, Shi J M, Zhao D P et al. Realization of compatible stealth material for infrared, laser and radar based on one-dimensional doping-structure photonic crystals[J]. Infrared Physics & Technology, 85, 62-65(2017).

    [34] Zhang J K, Zhao D P, Wang J C et al. Thermal infrared pattern painting based on photonic crystals[J]. Acta Optica Sinica, 36, 1216001(2016).

    [35] Qi D, Wang X, Cheng Y Z et al. Design and characterization of one-dimensional photonic crystals based on ZnS/Ge for infrared-visible compatible stealth applications[J]. Optical Materials, 62, 52-56(2016).

    [36] Yablonovitch E, Gmitter T J, Leung K M et al. 3-dimensional photonic band structure[J]. Optical and Quantum Electronics, 24, S273-S283(1992).

    [37] Lin S Y, Fleming J G, Hetherington D L et al. A three-dimensional photonic crystal operating at infrared wavelengths[J]. Nature, 394, 251-253(1998).

    [38] Enoch S, Simon J J, Escoubas L et al. Simple layer-by-layer photonic crystal for the control of thermal emission[J]. Applied Physics Letters, 86, 261101(2005).

    [39] Chernow V F, Alaeian H, Dionne J A et al. Polymer lattices as mechanically tunable 3-dimensional photonic crystals operating in the infrared[J]. Applied Physics Letters, 107, 101905(2015).

    [40] Zhang L C, Qiu L L, Lu W et al. Preparation of opal photonic crystal infrared stealth materials[J]. Acta Physica Sinica, 66, 084208(2017).

    [41] Hurtado J L M, Kraeh C, Popescu A et al. . In situ synthesis of VO2 for tunable mid-infrared photonic devices[J]. RSC Advances, 5, 59506-59512(2015).

    [42] Ruhl T, Spahn P, Hermann C et al. Double-inverse-opal photonic crystals: The route to photonic bandgap switching[J]. Advanced Functional Materials, 16, 885-890(2006).

    [43] Aryal D P, Tsakmakidis K L, Jamois C et al. Complete and robust bandgap switching in double-inverse-opal photonic crystals[J]. Applied Physics Letters, 92, 011109(2008).

    [44] Aliev A E, Zakhidov A A, Baughman R H et al. Chalcogenide inverted opal photonic crystal as infrared pigments[J]. International Journal of Nanoscience, 5, 157-172(2006).

    [45] Arpin K A, Losego M D, Cloud A N et al. Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification[J]. Nature Communications, 4, 2630(2013).

    [46] Wang Y F, Song J F, Tang X Y et al. Preparation and modified upconversion luminescence in NaGd (WO4)2∶Yb 3+/Tm 3+ inverse opal photonic crystals [J]. Journal of Inorganic Materials, 31, 1058-1062(2016).

    Yi Lu, Xiaohai Bu, Dongxian Li, Feiyou Liu, Zewu Zhang. Research Progress of Infrared Stealth Materials Based on Photonic Crystals[J]. Laser & Optoelectronics Progress, 2019, 56(8): 080003
    Download Citation