• Infrared and Laser Engineering
  • Vol. 52, Issue 11, 20230100 (2023)
Ke Li1, Jiaping Liang1, Yao Yao1,*, Yang Zhang2..., Siguang Zong3 and Tao Liu3|Show fewer author(s)
Author Affiliations
  • 1Engineering College, Shantou University, Shantou 515063, China
  • 2Naval Research Institute, Beijing 100161, China
  • 3Electronic Engineering College, Naval University of Engineering, Wuhan 430033, China
  • show less
    DOI: 10.3788/IRLA20230100 Cite this Article
    Ke Li, Jiaping Liang, Yao Yao, Yang Zhang, Siguang Zong, Tao Liu. Three-dimensional numerical characteristics of optical-to-acoustic transboundary communication in vaporization mechanism[J]. Infrared and Laser Engineering, 2023, 52(11): 20230100 Copy Citation Text show less
    Schematic diagram of laser scattering from sea surface
    Fig. 1. Schematic diagram of laser scattering from sea surface
    Diagram of discretization of Sxy
    Fig. 2. Diagram of discretization of Sxy
    Rough surface model in different sea state. (a) Three-level sea state; (b) Four-level sea state
    Fig. 3. Rough surface model in different sea state. (a) Three-level sea state; (b) Four-level sea state
    The BSC of laser from different rough surface at incident angle \begin{document}$ {\theta _{i1}} = {20^ \circ } $\end{document}. (a) Surface A; (b) Surface B
    Fig. 4. The BSC of laser from different rough surface at incident angle Unknown environment 'document'. (a) Surface A; (b) Surface B
    The BSC of laser from different rough surface at incident angle \begin{document}$ {\theta _{i1}} = {60^ \circ } $\end{document}. (a) Surface A; (b) Surface B
    Fig. 5. The BSC of laser from different rough surface at incident angle Unknown environment 'document'. (a) Surface A; (b) Surface B
    The BSC at different incident angles. (a) \begin{document}$ {\theta _{i1}} = {20^ \circ } $\end{document}; (b) \begin{document}$ {\theta _{i1}} = {60^ \circ } $\end{document}
    Fig. 6. The BSC at different incident angles. (a) Unknown environment 'document'; (b) Unknown environment 'document'
    The transmittance at different incident angles
    Fig. 7. The transmittance at different incident angles
    Schematic diagram of the simulated test system
    Fig. 8. Schematic diagram of the simulated test system
    Indoor simulation test system
    Fig. 9. Indoor simulation test system
    Optical system
    Fig. 10. Optical system
    Test tank
    Fig. 11. Test tank
    CO2 laser
    Fig. 12. CO2 laser
    Schematic diagram of the vaporized laser acoustic threshold test system. (a) Before laser incident; (b) After laser incident
    Fig. 13. Schematic diagram of the vaporized laser acoustic threshold test system. (a) Before laser incident; (b) After laser incident
    Acoustic pulse signal
    Fig. 14. Acoustic pulse signal
    Acoustic pulse spectrogram
    Fig. 15. Acoustic pulse spectrogram
    Area of light spot perpendicular to incident water surface. (a) Light spot before the divergence angle compression; (b) Light spot after the divergence angle compression
    Fig. 16. Area of light spot perpendicular to incident water surface. (a) Light spot before the divergence angle compression; (b) Light spot after the divergence angle compression
    Inincident angle/(°)01020304050607080
    Spot area/cm214.9314.9414.9614.9915.0615.1615.3415.7316.95
    Transmissivity98.5%98.5%98.4%98.2%97.8%97.2%94.5%86.6%65.8%
    Spot power density/kW·cm26.606.596.586.556.506.416.165.503.88
    Acoustical power/W731.2731.2714.6698.3682.4666.86636.8529.7133.1
    Acoustic energy degree/dB202.4202.4202.3202.2202.1202201.8201195
    Photoacoustic conversion efficiency7.4×10−37.4×10−37.3×10−37.1×10−37.0×10−36.9×10−36.7×10−36.1×10−32.0×10−3
    Effective acoustic power/W146.2146.2142.9139.6136.5133.4127.4105.926.6
    Effective acoustic energy degree/dB198.4195.4195.3195.2195.1195.0194.8194.0188.0
    Table 1. Table of laser induced acoustic characteristic parameters at different incident angles before convergence
    Inincident angle/(°)0
    Spot area/cm214.93
    Transmissivity98.5%
    Spot power density/kW·cm26.60
    Acoustical power/W731.2
    Acoustic energy degree/dB202.4
    Photoacoustic conversion efficiency7.4×10−3
    Effective acoustic power/W146.2
    Effective acoustic energy degree/dB198.4
    Table 2. Table of laser induced acoustic characteristic parameters at vertical incidence after convergence
    Ke Li, Jiaping Liang, Yao Yao, Yang Zhang, Siguang Zong, Tao Liu. Three-dimensional numerical characteristics of optical-to-acoustic transboundary communication in vaporization mechanism[J]. Infrared and Laser Engineering, 2023, 52(11): 20230100
    Download Citation