• Advanced Photonics
  • Vol. 3, Issue 5, 056001 (2021)
Hua Zhong1,†, Shiqi Xia2, Yiqi Zhang1,*, Yongdong Li1..., Daohong Song2,*, Chunliang Liu1 and Zhigang Chen2,3,*|Show fewer author(s)
Author Affiliations
  • 1Xi’an Jiaotong University, School of Electronic Science and Engineering, Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Faculty of Electronic and Information Engineering, Xi’an, China
  • 2Nankai University, TEDA Applied Physics Institute and School of Physics, MOE Key Laboratory of Weak-Light Nonlinear Photonics, Tianjin, China
  • 3San Francisco State University, Department of Physics and Astronomy, San Francisco, California, USA
  • show less
    DOI: 10.1117/1.AP.3.5.056001 Cite this Article Set citation alerts
    Hua Zhong, Shiqi Xia, Yiqi Zhang, Yongdong Li, Daohong Song, Chunliang Liu, Zhigang Chen, "Nonlinear topological valley Hall edge states arising from type-II Dirac cones," Adv. Photon. 3, 056001 (2021) Copy Citation Text show less
    References

    [1] M. Z. Hasan, C. L. Kane. Colloquium: topological insulators. Rev. Mod. Phys., 82, 3045-3067(2010).

    [2] X. L. Qi, S. C. Zhang. Topological insulators and superconductor. Rev. Mod. Phys., 83, 1057-1110(2011).

    [3] F. D. M. Haldane, S. Raghu. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett., 100, 013904(2008).

    [4] Z. Wang, Y. Chong, J. D. Joannopoulos, M. Soljačić. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature, 461, 772-775(2009).

    [5] M. C. Rechtsman et al. Photonic Floquet topological insulators. Nature, 496, 196-200(2013).

    [6] M. Hafezi et al. Imaging topological edge states in silicon photonics. Nat. Photonics, 7, 1001-1005(2013).

    [7] A. B. Khanikaev et al. Photonic topological insulators. Nat. Mater., 12, 233-239(2013).

    [8] W. J. Chen et al. Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide. Nat. Commun., 5, 5782(2014).

    [9] S. Stützer et al. Photonic topological Anderson insulators. Nature, 560, 461-465(2018).

    [10] Y. Yang et al. Realization of a three-dimensional photonic topological insulator. Nature, 565, 622-626(2019).

    [11] E. Lustig et al. Photonic topological insulator in synthetic dimensions. Nature, 567, 356-360(2019).

    [12] S. Klembt et al. Exciton-polariton topological insulator. Nature, 562, 552-556(2018).

    [13] Z. Yang et al. Photonic Floquet topological insulators in a fractal lattice. Light Sci. Appl., 9, 128(2020).

    [14] L. Lu, J. D. Joannopoulos, M. Soljacic. Topological photonics. Nat. Photonics, 8, 821-829(2014).

    [15] T. Ozawa et al. Topological photonics. Rev. Mod. Phys., 91, 015006(2019).

    [16] D. Smirnova et al. Nonlinear topological photonics. Appl. Phys. Rev., 7, 021306(2020).

    [17] A. Dikopoltsev et al. Topological insulator vertical-cavity laser array. Science, 373, 1514-1517(2021).

    [18] G. Harari et al. Topological insulator laser: theory. Science, 359, eaar4003(2018).

    [19] M. A. Bandres et al. Topological insulator laser: experiments. Science, 359, eaar4005(2018).

    [20] Z. Yang et al. Mode-locked topological insulator laser utilizing synthetic dimensions. Phys. Rev. X, 10, 011059(2020).

    [21] Y. V. Kartashov, D. V. Skryabin. Two-dimensional topological polariton laser. Phys. Rev. Lett., 122, 083902(2019).

    [22] L. J. M. Maczewsky et al. Nonlinearity-induced photonic topological insulator. Science, 370, 701-704(2020).

    [23] Y. Hadad, A. B. Khanikaev, A. Alù. Self-induced topological transitions and edge states supported by nonlinear staggered potentials. Phys. Rev. B, 93, 155112(2016).

    [24] Y. Lumer et al. Self-localized states in photonic topological insulators. Phys. Rev. Lett., 111, 243905(2013).

    [25] M. J. Ablowitz, C. W. Curtis, Y. P. Ma. Linear and nonlinear traveling edge waves in optical honeycomb lattices. Phys. Rev. A, 90, 023813(2014).

    [26] D. Leykam, Y.  D. Chong. Edge solitons in nonlinear-photonic topological insulators. Phys. Rev. Lett., 117, 143901(2016).

    [27] Y. V. Kartashov, D. V. Skryabin. Modulational instability and solitary waves in polariton topological insulators. Optica, 3, 1228-1236(2016).

    [28] D. R. Gulevich et al. Exploring nonlinear topological states of matter with exciton-polaritons: edge solitons in Kagome lattice. Sci. Rep., 7, 1780(2017).

    [29] C. Liet et al. Lieb polariton topological insulators. Phys. Rev. B, 97, 081103(2018).

    [30] Y. Q. Zhang, Y. V. Kartashov, A. Ferrando. Interface states in polariton topological insulators. Phys. Rev. A, 99, 053836(2019).

    [31] W. Zhang et al. Coupling of edge states and topological Bragg solitons. Phys. Rev. Lett., 123, 254103(2019).

    [32] S. Mukherjee, M. C. Rechtsman. Observation of Floquet solitons in a topological bandgap. Science, 368, 856-859(2020).

    [33] L. J. Maczewsky et al. Observation of photonic anomalous Floquet topological insulators. Nat. Commun., 8, 13756(2017).

    [34] S. Mukherjee et al. Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice. Nat. Commun., 8, 13918(2017).

    [35] L. H. Wu, X. Hu. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett., 114, 223901(2015).

    [36] K. F. Mak et al. The valley Hall effect in MoS2 transistors. Science, 344, 1489-1492(2014). https://doi.org/10.1126/science.1250140

    [37] J.-W. Dong et al. Valley photonic crystals for control of spin and topology. Nat. Mater., 16, 298-302(2017).

    [38] X. Wu et al. Direct observation of valley-polarized topological edge states in designer surface plasmon crystals. Nat. Commun., 8, 1304(2017).

    [39] J. Noh et al. Observation of photonic topological valley Hall edge states. Phys. Rev. Lett., 120, 063902(2018).

    [40] J.-W. Liu et al. Valley photonic crystals. Adv. Phys. X, 6, 1905546(2021).

    [41] Y. Zeng et al. Electrically pumped topological laser with valley edge modes. Nature, 578, 246-250(2020).

    [42] Y. Yang et al. Terahertz topological photonics for on-chip communication. Nat. Photonics, 14, 446-451(2020).

    [43] M. I. Shalaev et al. Robust topologically protected transport in photonic crystals at telecommunication wavelengths. Nat. Nanotechnol., 14, 31-34(2019).

    [44] D. A. Smirnova et al. Topological edge states and gap solitons in the nonlinear Dirac model. Laser Photonics Rev., 13, 1900223(2019).

    [45] S. Suntsov et al. Observation of discrete surface solitons. Phys. Rev. Lett., 96, 063901(2006).

    [46] K. G. Makris et al. Discrete surface solitons. Opt. Lett., 30, 2466-2468(2005).

    [47] X. Wang et al. Observation of two-dimensional surface solitons. Phys. Rev. Lett., 98, 123903(2007).

    [48] A. Szameit et al. Observation of two-dimensional surface solitons in asymmetric waveguide arrays. Phys. Rev. Lett., 98, 173903(2007).

    [49] F. Lederer et al. Discrete solitons in optics. Phys. Rep., 463, 1-126(2008).

    [50] Y. V. Kartashov, V. A. Vysloukh, L. Torner. Soliton shape and mobility control in optical lattices. Prog. Opt., 52, 63-148(2009).

    [51] J. Fleischer et al. Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature, 422, 147-150(2003).

    [52] L. Zeng, J. Zeng. Gap-type dark localized modes in a Bose–Einstein condensate with optical lattices. Adv. Photonics, 1, 046004(2019).

    [53] A. A. Soluyanov et al. Type-II Weyl semimetals. Nature, 527, 495-498(2015).

    [54] G. G. Pyrialakos et al. Emergence of type-II Dirac points in graphynelike photonic lattices. Phys. Rev. Lett., 119, 113901(2017).

    [55] B. Yang et al. Ideal Weyl points and helicoid surface states in artificial photonic crystal structures. Science, 359, 1013-1016(2018).

    [56] J. Noh et al. Experimental observation of optical Weyl points and Fermi arc-like surface states. Nat. Phys., 13, 611-617(2017).

    [57] G. G. Pyrialakos et al. Symmetry-controlled edge states in the type-II phase of Dirac photonic lattices. Nat. Commun., 11, 2074(2020).

    [58] C. Hu et al. Type-II Dirac photons at metasurfaces. Phys. Rev. Lett., 121, 024301(2018).

    [59] C. R. Mann et al. Manipulating type-I and type-II Dirac polaritons in cavity-embedded honeycomb metasurfaces. Nat. Commun., 9, 2194(2018).

    [60] L. Xia et al. Stretchable photonic Fermi arcs in twisted magnetized plasma. Laser Photonics Rev., 12, 1700226(2018).

    [61] M. Milićević et al. Type-III and tilted Dirac cones emerging from flat bands in photonic orbital graphene. Phys. Rev. X, 9, 031010(2019).

    [62] B. Yang et al. Direct observation of topological surface-state arcs in photonic metamaterials. Nat. Commun., 8, 97(2017).

    [63] F. Li et al. Weyl points and Fermi arcs in a chiral phononic crystal. Nat. Phys., 14, 30-34(2018).

    [64] X. Wu et al. Deterministic scheme for two-dimensional type-II Dirac points and experimental realization in acoustics. Phys. Rev. Lett., 124, 075501(2020).

    [65] S. Xia et al. Nontrivial coupling of light into a defect: the interplay of nonlinearity and topology. Light Sci. Appl., 9, 147(2020).

    [66] D. N. Christodoulides, M. I. Carvalho. Bright, dark, and gray spatial soliton states in photorefractive media. J. Opt. Soc. Am. B, 12, 1628-1633(1995).

    [67] K. C. Jin et al. Parametric type-II Dirac photonic lattices. Adv. Quantum Technol., 3, 2000015(2020).

    [68] S. Mansha, Y. Chong. Robust edge states in amorphous gyromagnetic photonic lattices. Phys. Rev. B, 96, 121405(2017).

    [69] C. Liu et al. Disorder-induced topological state transition in photonic metamaterials. Phys. Rev. Lett., 119, 183901(2017).

    [70] P. Zhou et al. Photonic amorphous topological insulator. Light Sci. Appl., 9, 133(2019).

    [71] S. Xia et al. Unconventional flatband line states in photonic Lieb lattices. Phys. Rev. Lett., 121, 263902(2018).

    [72] S. Xia et al. Topological phenomena demonstrated in photorefractive photonic lattices. Opt. Mater. Express, 11, 1292-1312(2021).

    [73] Z. Hu et al. Nonlinear control of photonic higher-order topological bound states in the continuum. Light Sci. Appl., 10, 164(2021).

    [74] D. Tan et al. Photonic circuits written by femtosecond laser in glass: improved fabrication and recent progress in photonic devices. Adv. Photonics, 3, 024002(2021).

    [75] M. S. Kirsch et al. Nonlinear second-order photonic topological insulators. Nat. Phys., 17, 995-1000(2021).

    [76] L. Zhang et al. High-frequency rectifiers based on type-II Dirac fermions. Nat. Commun., 12, 1584(2021).

    [77] S. Xia et al. Nonlinear tuning of PT symmetry and non-Hermitian topological states. Science, 372, 72-76(2021).

    [78] B. Xie et al. Higher-order band topology. Nat. Rev. Phys., 3, 520-532(2021).

    [79] W. Song et al. Subwavelength self-imaging in cascaded waveguide arrays. Adv. Photonics, 2, 036001(2020).

    [80] K. C. Jin et al. Rabi oscillations of Azimuthons in weakly nonlinear waveguides. Adv. Photonics, 2, 046002(2020).

    [81] K. Wang et al. Multidimensional synthetic chiral-tube lattices via nonlinear frequency conversion. Light Sci. Appl., 9, 132(2020).

    [82] Z. Chen, M. Segev. Highlighting photonics: looking into the next decade. eLight, 1, 2(2021).

    CLP Journals

    [1] Qiang Zhang, Zhenwei Xie, Peng Shi, Hui Yang, Hairong He, Luping Du, Xiaocong Yuan, "Optical topological lattices of Bloch-type skyrmion and meron topologies," Photonics Res. 10, 947 (2022)

    Hua Zhong, Shiqi Xia, Yiqi Zhang, Yongdong Li, Daohong Song, Chunliang Liu, Zhigang Chen, "Nonlinear topological valley Hall edge states arising from type-II Dirac cones," Adv. Photon. 3, 056001 (2021)
    Download Citation