• Photonics Research
  • Vol. 6, Issue 9, 867 (2018)
Jian Liu1、2、3 and Ka-Di Zhu1、2、3、*
Author Affiliations
  • 1Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shanghai 200240, China
  • 2School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
  • 3Collaborative Innovation Center of Advanced Microstructures, Nanjing 210000, China
  • show less
    DOI: 10.1364/PRJ.6.000867 Cite this Article Set citation alerts
    Jian Liu, Ka-Di Zhu. Room temperature optical mass sensor with an artificial molecular structure based on surface plasmon optomechanics[J]. Photonics Research, 2018, 6(9): 867 Copy Citation Text show less
    References

    [1] M. Moskovits. Surface-enhanced spectroscopy. Rev. Mod. Phys., 57, 783-826(1985).

    [2] A. Otto, I. Mrozek, H. Grabhorn, W. Akemann. Surface-enhanced Raman scattering. J. Phys. Condens. Matter, 4, 1143-1212(1992).

    [3] M. D. Sonntag, J. M. Klingsporn, L. K. Garibay, J. M. Roberts, J. A. Dieringer, T. Seideman, K. A. Scheidt, L. Jensen, G. C. Schatz, R. P. Van Duyne. Single-molecule tip-enhanced Raman spectroscopy. J. Phys. Chem. C, 116, 478-483(2012).

    [4] S. M. Nie, S. R. Emory. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 275, 1102-1106(1997).

    [5] W. Zhu, K. B. Crozier. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering. Nat. Commun., 5, 5228(2014).

    [6] J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, R. P. Van Duyne. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J. Am. Chem. Soc., 130, 12616-12617(2008).

    [7] D. Wang, W. Zhu, M. D. Best, J. P. Camden, K. B. Crozier. Directional Raman scattering from single molecules in the feed gaps of optical antennas. Nano Lett., 13, 2194-2198(2013).

    [8] R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Lou, J. L. Yang, J. G. Hou. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature, 498, 82-86(2013).

    [9] R. Chikkaraddy, B. Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, J. J. Baumberg. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature, 535, 127-130(2016).

    [10] P. Roelli, C. Galland, N. Piro, T. J. Kippenberg. Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering. Nat. Nanotechnol., 11, 164-169(2016).

    [11] A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, M. L. Roukes. Towards single-molecule nanomechanical mass spectrometry. Nat. Nanotechnol., 4, 445-450(2009).

    [12] E. Gil-Santos, D. Ramos, A. Jana, M. Calleja, A. Raman, J. Tamayo. Mass sensing based on deterministic and stochastic responses of elastically coupled nanocantilevers. Nano Lett., 9, 4122-4127(2009).

    [13] H. Y. Chiu, P. Hung, H. W. C. Postma, M. Bockrath. Atomic-scale mass sensing using carbon nanotube resonators. Nano Lett., 8, 4342-4346(2008).

    [14] K. Jensen, K. Kim, A. Zettl. An atomic-resolution nanomechanical mass sensor. Nat. Nanotechnol., 3, 533-537(2008).

    [15] J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, A. Bachtold. A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol., 7, 301-304(2012).

    [16] M. LaHaye, O. Buu, B. Camarota, K. Schwab. Approaching the quantum limit of a nanomechanical resonator. Science, 304, 74-77(2004).

    [17] S. Chun, Y. Kim, H. Jin, E. Choi, S. B. Lee, W. Park. A graphene force sensor with pressure-amplifying structure. Carbon, 78, 601-608(2014).

    [18] J. J. Li, K. D. Zhu. All-optical mass sensing with coupled mechanical resonator systems. Phys. Rep., 525, 223-254(2013).

    [19] J. J. Li, K. D. Zhu. Weighing a single atom using a coupled plasmon-carbon nanotube system. Sci. Tech. Adv. Mater., 13, 025006(2012).

    [20] A. Sakhaee-Pour, M. T. Ahmadian, R. Naghdabadi. Vibrational analysis of single-layered graphene sheets. Nanotechnology, 19, 085702(2008).

    [21] M. Sadeghi, R. Naghdabadi. Nonlinear vibrational analysis of single-layer graphene sheets. Nanotechnology, 21, 105705(2010).

    [22] R. Gillen, M. Mohr, J. Maultzsch. Symmetry properties of vibrational modes in graphene nanoribbons. Phys. Rev. B, 81, 205426(2010).

    [23] M. K. Schmidt, R. Esteban, A. Gonzalez-Tudela, G. Giedke, J. Aizpurua. Quantum mechanical description of Raman scattering from molecules in plasmonic cavities. ACS Nano, 10, 6291-6298(2016).

    [24] V. Giovannetti, D. Vitali. Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion. Phys. Rev. A, 63, 023812(2001).

    [25] D. F. Walls, G. J. Milburn. Quantum Optics, 124(1998).

    [26] R. W. Boyd. Nonlinear Optics(2008).

    [27] R. Narula, R. Panknin, S. Reich. Absolute Raman matrix elements of graphene and graphite. Phys. Rev. B, 82, 045418(2010).

    [28] J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, P. L. McEuen. Electromechanical resonators from graphene sheets. Science, 315, 490-493(2007).

    [29] C. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. L. Stormer, T. F. Heinz, J. Hone. Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat. Nanotechnol., 4, 861-867(2009).

    [30] A. M. van der Zande, R. A. Barton, J. S. Alden, C. S. Ruiz-Vargas, W. S. Whitney, P. H. Q. Pham, J. Park, J. M. Parpia, H. G. Craighead, P. L. McEuen. Large-scale arrays of single-layer graphene resonators. Nano Lett., 10, 4869-4873(2010).

    [31] V. Singh, S. Sengupta, H. S. Solanki, R. Dhall, A. Allain, S. Dhara, P. Pant, M. M. Deshmukh. Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators. Nanotechnology, 21, 165204(2010).

    [32] B. R. Goldsmith, J. G. Coroneus, V. R. Khalap, A. A. Kane, G. A. Weiss, P. G. Collins. Conductance-controlled point functionalization of single-walled carbon nanotubes. Science, 315, 77-81(2007).

    [33] K. L. Ekinci, Y. T. Yang, M. L. Roukes. Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. J. Appl. Phys., 95, 2682-2689(2004).

    [34] C. Jiang, B. Chen, J. J. Li, K. D. Zhu. Mass sensing based on a circuit cavity electromechanical system. J. Appl. Phys., 110, 083107(2011).

    CLP Journals

    [1] Biao Xiong, Xun Li, Shi-Lei Chao, Zhen Yang, Wen-Zhao Zhang, Weiping Zhang, Ling Zhou. Strong mechanical squeezing in an optomechanical system based on Lyapunov control[J]. Photonics Research, 2020, 8(2): 151

    [2] Jian-Yong Yang, Hua-Jun Chen. All-optical mass sensing based on ultra-strong coupling quantum dot-nanomechanical resonator system[J]. Acta Physica Sinica, 2019, 68(24): 246302-1

    Jian Liu, Ka-Di Zhu. Room temperature optical mass sensor with an artificial molecular structure based on surface plasmon optomechanics[J]. Photonics Research, 2018, 6(9): 867
    Download Citation