• Laser & Optoelectronics Progress
  • Vol. 53, Issue 12, 120004 (2016)
Wang Rui*, Ren Quansheng, and Zhao Jianye
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop53.120004 Cite this Article Set citation alerts
    Wang Rui, Ren Quansheng, Zhao Jianye. Research Progress on Photonic Neuromorphic Computing[J]. Laser & Optoelectronics Progress, 2016, 53(12): 120004 Copy Citation Text show less
    References

    [1] Monroe D. Neuromorphic computing gets ready for the (really) big time[J]. Communications of the ACM, 2014, 57(6): 13-15.

    [2] Mandal S, El-Amin A, Alexander K, et al. Novel synaptic memory device for neuromorphic computing[J]. Scientific Reports, 2014, 4(24): 5333.

    [3] Merolla P A, Arthur J V, Alvarezicaza R, et al. A million spiking-neuron integrated circuit with a scalable communication network and interface[J]. Science, 2014, 345(6197): 668-673.

    [4] Schemmel J, Bru Derle D, Gru Bl A, et al. A wafer-scale neuromorphic hardware system for large-scale neural modeling[C]. IEEE International Symposium on Circuits and Systems, 2010: 1947-1950.

    [5] Furber S B, Galluppi F, Temple S, et al. The SpiNNaker project[J]. Proceedings of the IEEE, 2014, 102(5): 652-665.

    [6] Tait A N, Nahmias M A, Tian Y, et al. Photonic neuromorphic signal processing and computing[M]. Heidelberg: Springer, 2014: 183-222.

    [7] Prucnal P R, Shastri B J, Lima T F D, et al. Recent progress in semiconductor excitable lasers for photonic spike processing[J]. Advances in Optics & Photonics, 2016, 8(2): 228-299.

    [8] Vitiello M S, Scamarcio G, Spagnolo V, et al. Terahertz quantum cascade lasers with large wall-plug efficiency[J]. Applied Physics Letters, 2007, 90(19): 191115.

    [9] Jenkins B K, Tanguay A R. Photonic implementations of neural networks[C]. Neural Networks for Signal Processing, 1992: 287-372.

    [10] Wang Yongjing, Zhang Yanxin, Guo Zhuanyun. Optical implementations of neural networks: A review[J]. Acta Photonica Sinica, 1997, 26(4): 289-297.

    [11] Li Y, Eichmann G, Dorsinville R, et al. Parallel digital optical computation based on optical phase conjugation (OPC)[C]. SPIE, 1988: 216-222.

    [12] Keyes R W. Opticallogic-in the light of computer technology[J]. Journal of Modern Optics, 1985, 32(5): 525-535.

    [13] Psaltis D, Athale R A. High accuracy computation with linear analog optical systems: A critical study[J]. Applied Optics, 1986, 25(18): 3071-3077.

    [14] Tian Y, Fok M P, Rosenbluth D, et al. Asynchronous spiking neuron based on four-wave mixing and cross absorption modulation[C]. Optical Fiber Communication Conference and Exposition, 2012: OTh3H.

    [15] Fok M P, Tian Y, Rosenbluth D, et al. Pulse lead/lag timing detection for adaptive feedback and control based on optical spike-timing-dependent plasticity[J]. Optics Letters, 2013, 38(4): 419-21.

    [16] Nahmias M A, Shastri B J, Tait A N, et al. A leaky integrate-and-fire laser neuron for ultrafast cognitive computing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(5): 1-12.

    [17] Romeira B, Javaloyes J, Ironside C N, et al. Excitability and optical pulse generation in semiconductor lasers driven by resonant tunneling diode photo-detectors[J]. Optics Express, 2013, 21(18): 20931-20940.

    [18] Romeira B, Avó R, Figueiredo J M L, et al. Regenerative memory in time-delayed neuromorphic photonic resonators[J]. Scientific Reports, 2015, 6: 19510.

    [19] Behrad G, Paul B, Chris C, et al. Microfibers: Amorphous metal-sulphide microfibers enable photonic synapses for brain-like computing[J]. Advanced Optical Materials, 2015, 3(5): 635-641.

    [20] Wang R, Ren Q S, Zhao J Y. General optoelectronic computing based on scalable photonic neuromorphic system[C]. CLEO: Applications and Technology, 2016: JTu5A.

    [21] Ren Q S, Zhang Y L, Wang R, et al. Optical spike-timing-dependent plasticity with weight-dependent learning window and reward modulation[J]. Optics Express, 2015, 23(19): 25247-25258.

    [22] Rabinovich M I, Varona P, Selverston A I, et al. Dynamical principles in neuroscience[J]. Reviews of Modern Physics, 2006, 78(4): 1213-1265.

    [23] Rosenbluth D, Kravtsov K, Fok M P, et al. A high performance photonic pulse processing device[J]. Optics Express, 2009, 17(25): 22767-22772.

    [24] Shastri B J, Nahmias M A, Tait A N, et al. NUSOD 2013 exploring excitability in graphene for spike processing networks[C]. IEEE International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), 2013: 83-84.

    [25] Kravtsov K S, Fok M P, Prucnal P R, et al. Ultrafast all-optical implementation of a leaky integrate-and-fire neuron[J]. Optics Express, 2011, 19(3): 2133-2147.

    [26] Fok M P, Deming H, Nahmias M, et al. Signal feature recognition based on lightwave neuromorphic signal processing[J]. Optics Letters, 2011, 36(1): 19-21.

    [27] Kobtsev S, Kukarin S, Fedotov Y. Ultra-low repetition rate mode-locked fiber laser with high-energy pulses[J]. Optics Express, 2008, 16(26): 21936-21941.

    [28] Inohara R, Nishimura K, Tsurusawa M, et al. Experimental analysis of cross-phase modulation and cross-gain modulation in SOA-injecting CW assist light[J]. IEEE Photonics Technology Letters, 2003, 15(9): 1192-1194.

    [29] Kravtsov K, Prucnal P R, Bubnov M M. Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA[J]. Optics Express, 2007, 15(20): 13114-13122.

    [30] Sokoloff J P, Prucnal P R, Glesk I, et al. A terahertz optical asymmetric demultiplexer (TOAD)[J]. IEEE Photonics Technology Letters, 1993, 5(7): 787-790.

    [31] Shastri B J, Nahmias M A, Tait A N, et al. Simulations of a graphene excitable laser for spike processing[J]. Optical & Quantum Electronics, 2014, 46(10): 1353-1358.

    [32] Shastri B J, Nahmias M A, Tait A N, et al. Spike processing with a graphene excitable laser[J]. Scientific Reports, 2016, 6: 19126.

    [33] Dubbeldam J L A, Krauskopf B. Self-pulsations of lasers with saturable absorber: Dynamics and bifurcations[J]. Optics Communications, 1999, 159(4): 325-338.

    [34] Nahmias M A, Tait A N, Shastri B J, et al. An evanescent hybrid silicon laser neuron[C]. Photonics Conference, 2013: 93-94.

    [35] Selmi F, Braive R, Beaudoin G, et al. Relative refractory period in an excitable semiconductor laser[J]. Physical Review Letters, 2014, 112(18): 183902.

    [36] Barbay S, Kuszelewicz R, Yacomotti A M. Excitability in a semiconductor laser with saturable absorber[J]. Optics Letters, 2011, 36(23): 4476-4478.

    [37] Nahmias M A, Tait A N, Tolias L, et al. An integrated analog O/E/O link for multi-channel laser neurons[J]. Applied Physics Letters, 2016, 108(15): 151106.

    [38] Cotman C W, Nietosampedro M. Cell biology of synaptic plasticity[J]. Science, 1984, 225(4668): 1287-94.

    [39] Abbott L F, Nelson S B. Synaptic plasticity: Taming the beast[J]. Nature Neuroscience, 2000, 3(11s): 1178-1183.

    [40] Song S, Miller K D, Abbott L F. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity[J]. Nature Neuroscience, 2000, 3(9): 919-926.

    [41] Sjstrm P J, Rancz E A, Roth A, et al. Dendritic excitability and synaptic plasticity[J]. Physiological Reviews, 2008, 88(2): 769-840.

    [42] Ren Q, Kolwankar K M, Samal A, et al. STDP-driven networks and the C. elegans neuronal network[J]. Physica A: Statistical Mechanics & Its Applications, 2010, 389(18): 3900-3914.

    [43] Toole R, Fok M P. Photonic implementation of a neuronal learning algorithm based on spike timing dependent plasticity[C]. IEEE Optical Fiber Communications Conference and Exhibition, 2015: W1K-6.

    [44] Izhikevich E M. Solving the distal reward problem through linkage of STDP and dopamine signaling[J]. Cerebral Cortex, 2007, 17(10): 2443-2452.

    [45] Farries M A, Fairhall A L. Reinforcement learning with modulated spike timing dependent synaptic plasticity[J]. Journal of Neurophysiology, 2008, 98(6): 3648-3665.

    [46] Rubin J, Lee D D, Sompolinsky H. Equilibrium properties of temporally asymmetric Hebbian plasticity[J]. Physical Review Letters, 2001, 86(2): 364-367.

    [47] Tait A N, Nahmias M A, Shastri B J, et al. Broadcast and weight: An integrated network for scalable photonic spike processing[J]. Journal of Lightwave Technology, 2014, 32(21): 4029-4041.

    [48] Nahmias M A, Tait A N, Shastri B J, et al. Excitable laser processing network node in hybrid silicon: Analysis and simulation[J]. Optics Express, 2015, 23(20): 26800-26813.

    [49] Tait A N, Lima T F D, Nahmias M A,et al. Continuous calibration of microring weights for analog optical networks[J]. IEEE Photonics Technology Letters, 2016, 28(8): 887-890.

    [50] Tait A N, de Lima T F, Nahmias M A, et al. Multi-channel control for microring weight banks[J]. Optics Express, 2016, 24(8): 8895-8906.

    [51] Massini G. Hopfield Neural Network[J]. Substance Use & Misuse, 1998, 33(33): 481-488.

    [52] Foss J. Neuralengineering: Computation, representation, and dynamics in neurobiological systems[J]. IEEE Transactions on Neural Networks, 2004, 15(2): 528-529.

    [53] Eliasmith C, Stewart T C, Choo X, et al. A large-scale model of the functioning brain[J]. Science, 2012, 338(6111): 1202-1205.

    [54] Galluppi F, Davies S, Furber S, et al. Real time on-chip implementation of dynamical systems with spiking neurons[C]. IEEE International Joint Conference on Neural Networks (IJCNN), 2012: 1-8.

    [55] Mundy A, Knight J, Stewart T C, et al. An efficient SpiNNaker implementation of the neural engineering framework[C]. IEEE International Joint Conference on Neural Networks, 2015: 1-8.

    [56] Boahen K A. Point-to-point connectivity between neuromorphic chips using address events[J]. IEEE Transactions on Circuits & Systems II Analog & Digital Signal Processing, 2000, 47(5): 416-434.

    [57] Tian Yunyun, Zhou Guiyao, Zhang Wei, et al. Preparation of Yb doped microstructure fiber and amplification experiment of femtosecond laser[J]. Acta Optica Sinica, 2014, 34(s1): s106010.

    [58] Zhao Xiaowei, Chai Lu, Shi Junkai, et al. Investigation of the pump schemes in photonics crystal fiber femtosecond laser amplifier[J]. Chinese J Lasers, 2015, 42(5): 0505005.

    [59] Yu Hailong, Wang Xiaolin, Su Rongtao, et al. Advances in high power femtosecond fiber laser systems[J]. Laser & Optoelectronics Progress, 2016, 53(5): 050007.

    [60] Sun C, Wade M T, Lee Y, et al. Single-chip microprocessor that communicates directly using light[J]. Nature, 2015, 528(7583): 534-538.

    [61] Caulfield H J. Perspectives in optical computing[J]. Computer, 1998, 31(2): 22-25.

    [62] Shastri B J, Chang J, Tait A N, et al. Ultrafast optical techniques for communication networks and signal processing[M]. Berlin: Springer, 2015: 469-503.

    [63] Zhou S H, Wang H X, Hu L B, et al. Signal fusion network for spatial diversity MIMO radar[C]. International Radar Conference, IET, 2009: 1-4.

    [64] Ma J, Li G Y, Juang B H. Signal processing in cognitive radio[J]. Proceedings of the IEEE, 2009, 97(5): 805-823.

    [65] Artels A, Heinecke D, Diddams S A. 10 GHz self-referenced optical frequency comb[J]. Science, 2009, 326(5953): 681-681.

    Wang Rui, Ren Quansheng, Zhao Jianye. Research Progress on Photonic Neuromorphic Computing[J]. Laser & Optoelectronics Progress, 2016, 53(12): 120004
    Download Citation