• Photonics Research
  • Vol. 6, Issue 10, 971 (2018)
Esrom Kifle1, Pavel Loiko2, Javier Rodríguez Vázquez de Aldana3, Carolina Romero3, Airán Ródenas1、4, Sun Yung Choi5, Ji Eun Bae5, Fabian Rotermund5, Viktor Zakharov2, Andrey Veniaminov2, Magdalena Aguiló1, Francesc Díaz1, Uwe Griebner6, Valentin Petrov6, and Xavier Mateos1、*
Author Affiliations
  • 1Universitat Rovira i Virgili, Departament Química Física i Inorgànica, Física i Cristal·lografia de Materials i Nanomaterials (FiCMA-FiCNA)-EMaS, Campus Sescelades, E-43007 Tarragona, Spain
  • 2ITMO University, 49 Kronverkskiy pr., 197101 St. Petersburg, Russia
  • 3Aplicaciones del Láser y Fotónica, University of Salamanca, 37008 Salamanca, Spain
  • 4Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche (IFN-CNR), Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
  • 5Department of Physics, KAIST, 291 Daehak-ro, Yuseong-gu, 34141 Daejeon, South Korea
  • 6Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2a, D-12489 Berlin, Germany
  • show less
    DOI: 10.1364/PRJ.6.000971 Cite this Article Set citation alerts
    Esrom Kifle, Pavel Loiko, Javier Rodríguez Vázquez de Aldana, Carolina Romero, Airán Ródenas, Sun Yung Choi, Ji Eun Bae, Fabian Rotermund, Viktor Zakharov, Andrey Veniaminov, Magdalena Aguiló, Francesc Díaz, Uwe Griebner, Valentin Petrov, Xavier Mateos. Passively Q-switched femtosecond-laser-written thulium waveguide laser based on evanescent field interaction with carbon nanotubes[J]. Photonics Research, 2018, 6(10): 971 Copy Citation Text show less
    References

    [1] R. C. Stoneman, L. Esterowitz. Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers. Opt. Lett., 15, 486-488(1990).

    [2] P. Loiko, M. Pollnau. Stochastic model of energy-transfer processes among rare-earth ions. Example of Al2O3:Tm3+. J. Phys. Chem. C, 120, 26480-26489(2016).

    [3] K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, M. Pollnau. Thulium channel waveguide laser with 1.6  W of output power and ∼80% slope efficiency. Opt. Lett., 39, 4380-4383(2014).

    [4] W. Bolaños, J. J. Carvajal, M. C. Pujol, X. Mateos, G. Lifante, M. Aguiló, F. Díaz. Epitaxial growth of lattice matched KY1-x-yGdxLuy(WO4)2 thin films on KY(WO4)2 substrates for waveguiding applications. Cryst. Growth Des., 9, 3525-3531(2009).

    [5] K. van Dalfsen, S. Aravazhi, D. Geskus, K. Wörhoff, M. Pollnau. Efficient KY1-x-yGdxLuy(WO4)2:Tm3+ channel waveguide lasers. Opt. Express, 19, 5277-5282(2011).

    [6] V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, F. Díaz. Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host. Laser Photon. Rev., 1, 179-212(2007).

    [7] K. M. Davis, K. Miura, N. Sugimoto, K. Hirao. Writing waveguides in glass with a femtosecond laser. Opt. Lett., 21, 1729-1731(1996).

    [8] S. Taccheo, G. D. Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, D. Kopf. Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses. Opt. Lett., 29, 2626-2628(2004).

    [9] M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, M. J. Withford. Ultrafast laser written active devices. Laser Photon. Rev., 3, 535-544(2009).

    [10] Y. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. del Rosal Rabes, Y. Tan, D. Jaque, F. Chen. Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes. Sci. Rep., 4, 5988(2014).

    [11] J. A. Grant-Jacob, S. J. Beecher, T. L. Parsonage, P. Hua, J. I. Mackenzie, D. P. Shepherd, R. W. Eason. An 11.5  W Yb:YAG planar waveguide laser fabricated via pulsed laser deposition. Opt. Mater. Express, 6, 91-96(2016).

    [12] D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, M. J. Withford. Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser. Opt. Lett., 36, 1587-1589(2011).

    [13] F. Fusari, R. R. Thomson, G. Jose, F. M. Bain, A. A. Lagatsky, N. D. Psaila, A. K. Kar, A. Jha, W. Sibbett, C. T. A. Brown. Lasing action at around 1.9  μm from an ultrafast laser inscribed Tm-doped glass waveguide. Opt. Lett., 36, 1566-1568(2011).

    [14] D. G. Lancaster, S. Gross, M. J. Withford, T. M. Monro. Widely tunable short-infrared thulium and holmium doped fluorozirconate waveguide chip lasers. Opt. Express, 22, 25286-25294(2014).

    [15] Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, A. K. Kar. Mid-infrared waveguide lasers in rare-earth-doped YAG. Opt. Lett., 37, 3339-3341(2012).

    [16] D. G. Lancaster, S. Gross, A. Fuerbach, H. Ebendorff Heidepriem, T. M. Monro, M. J. Withford. Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers. Opt. Express, 20, 27503-27509(2012).

    [17] J. Morris, N. K. Stevenson, H. T. Bookey, A. K. Kar, C. T. A. Brown, J.-M. Hopkins, M. D. Dawson, A. A. Lagatsky. 1.9  μm waveguide laser fabricated by ultrafast laser inscription in Tm:Lu2O3 ceramic. Opt. Express, 25, 14910-14917(2017).

    [18] E. Kifle, X. Mateos, J. R. Vázquez de Aldana, A. Ródenas, P. Loiko, S. Y. Choi, F. Rotermund, U. Griebner, V. Petrov, M. Aguiló, F. Díaz. Femtosecond-laser written Tm:KLu(WO4)2 waveguide lasers. Opt. Lett., 42, 1169-1172(2017).

    [19] E. Kifle, P. Loiko, X. Mateos, J. R. Vázquez de Aldana, A. Ródenas, U. Griebner, V. Petrov, M. Aguiló, F. Díaz. Femtosecond-laser-written hexagonal cladding waveguide in Tm:KLu(WO4)2: μ-Raman study and laser operation. Opt. Mater. Express, 7, 4258-4268(2017).

    [20] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater., 19, 3077-3083(2009).

    [21] J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, F. Díaz. Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber. Opt. Express, 23, 14108-14113(2015).

    [22] W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, F. Rotermund. Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers. Adv. Funct. Mater., 20, 1937-1943(2010).

    [23] H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, K. P. Loh. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Opt. Express, 22, 7249-7260(2014).

    [24] J. M. Serres, P. Loiko, X. Mateos, H. Yu, H. Zhang, Y. Chen, V. Petrov, U. Griebner, K. Yumashev, M. Aguiló, F. Díaz. MoS2 saturable absorber for passive Q-switching of Yb and Tm microchip lasers. Opt. Mater. Express, 6, 3262-3273(2016).

    [25] P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, J. Hu. A practical topological insulator saturable absorber for mode-locked fiber laser. Sci. Rep., 5, 8690(2015).

    [26] P. Loiko, J. Bogusławski, J. M. Serres, E. Kifle, M. Kowalczyk, X. Mateos, J. Sotor, R. Zybała, K. Mars, A. MikuŁa, K. Kaszyca, M. Aguiló, F. Díaz, U. Griebner, V. Petrov. Sb2Te3 thin film for the passive Q-switching of a Tm:GdVO4 laser. Opt. Mater. Express, 8, 1723-1732(2018).

    [27] Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, G. R. Lin. Using n-and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers. ACS Photon., 2, 481-490(2015).

    [28] J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, K. M. Abramski. Ultrafast thulium-doped fiber laser mode locked with black phosphorus. Opt. Lett., 40, 3885-3888(2015).

    [29] J. Boguslawski, J. Sotor, G. Sobon, R. Kozinski, K. Librant, M. Aksienionek, L. Lipinska, K. M. Abramski. Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers. Photon. Res., 3, 119-124(2015).

    [30] G. R. Lin, Y. C. Lin. Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser. Laser Phys. Lett., 8, 880-886(2011).

    [31] X. Mateos, P. Loiko, S. Y. Choi, F. Rotermund, M. Aguiló, F. Díaz, U. Griebner, V. Petrov. Single-walled carbon nanotubes oust graphene and semiconductor saturable absorbers in Q-switched solid-state lasers at 2  μm. Laser Phys. Lett., 14, 095801(2017).

    [32] P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, V. Petrov. Vibronic thulium laser at 2131  nm Q-switched by single-walled carbon nanotubes. J. Opt. Soc. Am. B, 33, D19-D27(2016).

    [33] W. Bolaños, J. J. Carvajal, X. Mateos, E. Cantelar, G. Lifante, U. Griebner, V. Petrov, V. L. Panyutin, G. S. Murugan, J. S. Wilkinson, M. Aguiló, F. Díaz. Continuous-wave and Q-switched Tm-doped KY(WO4)2 planar waveguide laser at 1.84  μm. Opt. Express, 19, 1449-1454(2011).

    [34] Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, A. K. Kar. 7.8-GHz graphene-based 2-μm monolithic waveguide laser. IEEE J. Sel. Top. Quantum Electron., 21, 395-400(2015).

    [35] E. Kifle, X. Mateos, P. Loiko, V. Petrov, U. Griebner, M. Aguiló, F. Díaz. Graphene Q-switched Tm:KY(WO4)2 waveguide laser. Laser Phys., 27, 045801(2017).

    [36] J. H. Lee, S. Gross, B. V. Cunning, C. L. Brown, D. Kielpinski, T. M. Monro, D. G. Lancaster. Graphene-based passive Q-switching of a Tm3+:ZBLAN short-infrared waveguide laser. Conference on Lasers and Electro-Optics (CLEO), JTu4A.128(2014).

    [37] X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, A. Fuerbach. Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm:ZBLAN waveguide lasers. Ann. Phys., 528, 543-550(2016).

    [38] J. W. Kim, S. Y. Choi, D.-I. Yeom, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, F. Rotermund. Yb:KYW planar waveguide laser Q-switched by evanescent-field interaction with carbon nanotubes. Opt. Lett., 38, 5090-5093(2013).

    [39] Y. Tan, R. He, J. Macdonald, A. K. Kar, F. Chen. Q-switched Nd:YAG channel waveguide laser through evanescent field interaction with surface coated graphene. Appl. Phys. Lett., 105, 101111(2014).

    [40] A. Choudhary, S. J. Beecher, S. Dhingra, B. D’Urso, T. L. Parsonage, J. A. Grant-Jacob, P. Hua, J. I. Mackenzie, R. W. Eason, D. P. Shepherd. 456-mW graphene Q-switched Yb:yttria waveguide laser by evanescent-field interaction. Opt. Lett., 40, 1912-1915(2015).

    [41] J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D.-I. Yeom, F. Rotermund. Graphene Q-switched Yb:KYW planar waveguide laser. AIP Adv., 5, 017110(2015).

    [42] H. Liu, C. Cheng, C. Romero, J. R. Vázquez de Aldana, F. Chen. Graphene-based Y-branch laser in femtosecond laser written Nd:YAG waveguides. Opt. Express, 23, 9730-9735(2015).

    [43] Y.-H. Lin, C.-Y. Yang, J.-H. Liou, C.-P. Yu, G.-R. Lin. Using graphene nano-particle embedded in photonic crystal fiber for evanescent wave mode-locking of fiber laser. Opt. Express, 21, 16763-16776(2013).

    [44] J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, H. Zhang. Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction. Sci. Rep., 4, 6346(2014).

    [45] J. M. Serres, X. Mateos, P. Loiko, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, F. Díaz. Diode-pumped microchip Tm:KLu(WO4)2 laser with more than 3  W of output power. Opt. Lett., 39, 4247-4250(2014).

    [46] H.-D. Nguyen, A. Ródenas, J. R. Vázquez de Aldana, J. Martínez, F. Chen, M. Aguiló, M. C. Pujol, F. Díaz. Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides. Opt. Express, 24, 7777-7791(2016).

    [47] W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz. Passive mode-locking of a Tm-doped bulk laser near 2  μm using a carbon nanotube saturable absorber. Opt. Express, 17, 11007-11012(2009).

    [48] X. Mateos, P. Loiko, J. M. Serres, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, F. Díaz. Efficient micro-lasers based on highly-doped monoclinic double tungstates. IEEE J. Quantum Electron., 53, 1700110(2017).

    [49] F. M. Bain, A. A. Lagatsky, R. R. Thomson, N. D. Psaila, N. V. Kuleshov, A. K. Kar, W. Sibbett, C. T. A. Brown. Ultrafast laser inscribed Yb:KGd(WO4)2 and Yb:KY(WO4)2 channel waveguide lasers. Opt. Express, 17, 22417-22422(2009).

    [50] A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, F. Díaz. Modeling of graphene Q-switched Tm lasers. Opt. Commun., 389, 15-22(2017).

    [51] G. Li, H. Li, R. Gong, Y. Tan, J. R. Vázquez de Aldana, Y. Sun, F. Chen. Intracavity biosensor based on the Nd:YAG waveguide laser: tumor cells and dextrose solutions. Photon. Res., 5, 728-732(2017).

    CLP Journals

    [1] Lingqi Li, Weijin Kong, Feng Chen. Femtosecond laser-inscribed optical waveguides in dielectric crystals: a concise review and recent advances[J]. Advanced Photonics, 2022, 4(2): 024002

    [2] Yuechen Jia, Feng Chen. Compact solid-state waveguide lasers operating in the pulsed regime: a review [Invited][J]. Chinese Optics Letters, 2019, 17(1): 012302

    Esrom Kifle, Pavel Loiko, Javier Rodríguez Vázquez de Aldana, Carolina Romero, Airán Ródenas, Sun Yung Choi, Ji Eun Bae, Fabian Rotermund, Viktor Zakharov, Andrey Veniaminov, Magdalena Aguiló, Francesc Díaz, Uwe Griebner, Valentin Petrov, Xavier Mateos. Passively Q-switched femtosecond-laser-written thulium waveguide laser based on evanescent field interaction with carbon nanotubes[J]. Photonics Research, 2018, 6(10): 971
    Download Citation