• Chinese Journal of Lasers
  • Vol. 48, Issue 8, 0802014 (2021)
Qiang Jia, Wengan Wang, Zhanwen A, Zhongyang Deng, Bin Feng, and Lei Liu*
Author Affiliations
  • Department of Mechanical Engineering, State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
  • show less
    DOI: 10.3788/CJL202148.0802014 Cite this Article Set citation alerts
    Qiang Jia, Wengan Wang, Zhanwen A, Zhongyang Deng, Bin Feng, Lei Liu. Low-Temperature Bonding of Ag-Pd Nanoalloy and Its Resistance to Electrochemical-Migration[J]. Chinese Journal of Lasers, 2021, 48(8): 0802014 Copy Citation Text show less
    References

    [1] Ni Y X, Jing H Q, Kong J X et al. Thermal performance of high-power laser diodes packaged by SiC ceramic submount[J]. Chinese Journal of Lasers, 45, 0101002(2018).

    [2] Zhang B, Deng X C, Zhang Y R et al. Recent development and future perspective of silicon carbide power devices: opportunity and challenge[J]. Journal of China Academy of Electronics and Information Technology, 4, 111-118(2009).

    [3] Wang T, Chen X, Lu G Q et al. Low-temperature sintering with nano-silver paste in die-attached interconnection[J]. Journal of Electronic Materials, 36, 1333-1340(2007).

    [4] Zhu Y, Tang S P, Yan J F et al. Comparation of the bonding through sintering between Ag nanoparticle paste and Ag microparticle paste[J]. Journal of Beijing University of Aeronautics and Astronautics, 39, 484-487(2013).

    [5] Mu F W, Zou G S, Zhao Z Y et al. Low temperature sintering-bonding through in situ formation of Ag nanoparticles using micro-scaled Ag2O composite paste[J]. Transactions of the China Welding Institution, 34, 38-42,115(2013).

    [6] Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool[J]. Modelling and Simulation in Materials Science and Engineering, 18, 015012(2010). http://adsabs.harvard.edu/abs/2010MSMSE..18a5012S

    [7] Mei Y H. The investigation of low temperature sintered nanosilver paste on migration and thermal bending in die-attachment[D]. Tianjin: Tianjin University(2010).

    [8] Kim K S, Jung K H, Park B G et al. Characterization of Ag-Pd nanocomposite paste for electrochemical migration resistance[J]. Journal of Nanoscience and Nanotechnology, 13, 7620-7624(2013). http://www.ncbi.nlm.nih.gov/pubmed/24245303

    [9] Naguib H, MacLaurin B. Silver migration and the reliability of Pd/Ag conductors in thick-film dielectric crossover structures[J]. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 2, 196-207(1979). http://ieeexplore.ieee.org/document/1135444

    [10] Lin J C, Chan J Y. On the resistance of silver migration in Ag-Pd conductive thick films under humid environment and applied d.c. field[J]. Materials Chemistry and Physics, 43, 256-265(1996). http://www.sciencedirect.com/science/article/pii/0254058495016428

    [11] Wang D. On resistance of nano-Ag-Pd paste to electrochemical migration behavior at high temperatures[D]. Tianjin: Tianjin University(2018).

    [12] Lin J C, Wu W. On the sintering of mixed and alloyed silver-palladium powders from chemical coprecipitation[J]. Materials Chemistry and Physics, 40, 110-118(1995). http://www.sciencedirect.com/science/article/pii/025405849401460X

    [13] Buttay C, Planson D, Allard B et al. State of the art of high temperature power electronics[J]. Materials Science and Engineering B, 176, 283-288(2011). http://www.sciencedirect.com/science/article/pii/S0921510710006136

    [14] Feng B, Shen D Z, Wang W G et al. Cooperative bilayer of lattice-disordered nanoparticles as room-temperature sinterable nanoarchitecture for device integrations[J]. ACS Applied Materials & Interfaces, 11, 16972-16980(2019). http://pubs.acs.org/doi/10.1021/acsami.9b00307

    [15] Jia Q, Zou G S, Wang W G et al. Sintering mechanism of a supersaturated Ag-Cu nanoalloy film for power electronic packaging[J]. ACS Applied Materials & Interfaces, 12, 16743-16752(2020). http://pubs.acs.org/doi/10.1021/acsami.9b20731

    [16] Kim D H, Kim H Y, Ryu J H et al. Phase diagram of Ag-Pd bimetallic nanoclusters by molecular dynamics simulations: solid-to-liquid transition and size-dependent behavior[J]. Physical Chemistry Chemical Physics, 11, 5079-5085(2009).

    [17] Karakaya I, Thompson W T. The Ag-Pd (silver-palladium) system[J]. Bulletin of Alloy Phase Diagrams, 9, 237-243(1988). http://link.springer.com/article/10.1007/BF02881271

    [18] Ji Y T, Yang S C, Guo S W et al. Bimetallic Ag/Au nanoparticles: a low temperature ripening strategy in aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 372, 204-209(2010). http://www.sciencedirect.com/science/article/pii/S0927775710005996

    [19] Anderson R, Buscall R, Eldridge R et al. Ostwald ripening of comb polymer stabilised Ag salt nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 459, 58-64(2014). http://www.sciencedirect.com/science/article/pii/S0927775714005792

    [20] Tian Y H, Jiang Z, Wang C X et al. Sintering mechanism of the Cu-Ag core-shell nanoparticle paste at low temperature in ambient air[J]. RSC Advances, 6, 91783-91790(2016). http://pubs.rsc.org/en/content/articlehtml/2016/ra/c6ra16474a

    Qiang Jia, Wengan Wang, Zhanwen A, Zhongyang Deng, Bin Feng, Lei Liu. Low-Temperature Bonding of Ag-Pd Nanoalloy and Its Resistance to Electrochemical-Migration[J]. Chinese Journal of Lasers, 2021, 48(8): 0802014
    Download Citation