• Laser & Optoelectronics Progress
  • Vol. 53, Issue 8, 80003 (2016)
Li Menglong*, Gao Long, Shi Wenzong, Feng Wen, Yan Fanjiang, and Tao Yuliang
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop53.080003 Cite this Article Set citation alerts
    Li Menglong, Gao Long, Shi Wenzong, Feng Wen, Yan Fanjiang, Tao Yuliang. Progress in All-Solid-State Single-Frequency Lasers[J]. Laser & Optoelectronics Progress, 2016, 53(8): 80003 Copy Citation Text show less
    References

    [1] Wang C H, Zhang X, Ye Z B, et al. 180 mJ, long-pulse-duration, master-oscillator power amplifier with linewidth less than 25.6 kHz for laser guide stars[J]. Applied Optics, 2013, 52(19): 4693-4697.

    [2] Mavalvala N, McClelland D E, Mueller G, et al. Lasers and optics: Looking towards third generation gravitational wave detectors[J]. General Relativity & Gravitation, 2011, 43(2): 569-592.

    [3] Ishii S, Iwasaki T, Sato M, et al. Future Doppler lidar wind measurement from space in Japan[C]. SPIE, 2012, 8529: 85290A.

    [4] Meier T, Willke B, Danzmann K. Continuous-wave single-frequency 532 nm laser source emitting 130 W into the fundamental transversal mode[J]. Optics Letters, 2010, 35(22): 3742-3744.

    [5] Wang Ran, Gao Chunqing. Progress of 1.6 μm region single-frequency lasers[J]. Laser & Optoelectronics Progress, 2013, 50(8): 080006.

    [6] Liu Chong, Zhang Xiang, Ye Zhibin, et al. Single frequency laser with 100 MHz repetition rate and 1 ns pulse width using combined amplification[J]. Chinese J Lasers, 2014, 41(4): 0402006.

    [7] Li Peng, Ma Yayun, Nie Dandan, et al. Continuous-wave single-frequency 1.5 μm laser generated by a singly resonant optical parametric oscillator[J]. Chinese J Lasers, 2014, 41(8): 0802008.

    [8] Dai Shutao, Li Jinhui, Shi Fei, et al. High repetition rate high pulse energy single longitudinal mode master oscillator laser[J]. Chinese J Lasers, 2014, 41(12): 1202001.

    [9] Jiang Jiaxin, Li Shiguang, Ma Xiuhua, et al. Investigation on spectral purity frequency pulsed optical of injection seeding single parametric oscillator[J]. Chinese J Lasers, 2015, 42(7): 0702011.

    [10] Kubodera K, Otsuka K. Efficient LiNdP4O12 lasers pumped with a laser diode[J]. Applied Optics, 1979, 18(23): 3882-3883.

    [11] Zayhowski J J, Mooradian A. Single-frequency microchip Nd lasers[J]. Optics Letters, 1989, 14(1): 24-26.

    [12] Zayhowski J J, Dill III C. Diode-pumped passively Q-switched picosecond microchip lasers[J]. Optics Letters, 1994, 19(18): 1427-1429.

    [13] Taira T, Mukai A, Nozawa Y, et al. Single-mode oscillation of laser-diode-pumped NdYVO4 microchip lasers[J]. Optics Letters, 1991, 16(24): 1955-1957.

    [14] Shan Zhenguo, Shen Xiaohua, Huang Guosong, et al. Single longitudinal mode operation of LD pumped Nd:YAG microchip laser[J]. Laser & Infrared, 1993, 23(6): 22-23.

    [15] Sotor J Z, Antończak A J, Abramski K M. Single frequency, widely tuneable green microchip laser[C]. 11th International Conference on Transparent Optics Networks, Graz, 2009: 1-4.

    [16] Li G, Yao B Q, Zhang C H, et al. Diode pumped operation of Tm,Ho:YVO4 microchip laser[J]. Chinese Physics Letters, 2010, 27(3): 034201.

    [17] Wang L, Gao C Q, Gao M W, et al. Diode-pumped 2 μm tunable single-frequency TmLuAG laser with intracavity etalons[J]. Applied Optics, 2013, 52(6): 1272-1275.

    [18] Li Y J, Feng J X, Li P, et al. 400 mW low noise continuous-wave single-frequency Er,YbYAl3(BO3)4 laser at 1.55 μm[J]. Optics Letters, 2013, 21(5): 6082-6090.

    [19] Kane T J, Byer R L. Monolithic, unidirectional single-mode Nd:YAG ring laser[J]. Optics Letters, 1985, 10(2): 65-67.

    [20] Kane T J, Nilsson A C, Byer R L. Frequency stability and offset locking of a laser-diode-pumped Nd:YAG monolithic nonplanar ring oscillator[J]. Optics Letters, 1987, 12(3): 175-177.

    [21] Zang E J, Cao J P, Li Y. Single-frequency 1.25 W monolithic lasers at 1123 nm[J]. Optics Letters, 2007, 32(3): 250-252.

    [22] Wang L, Gao C Q, Gao M W, et al. Resonantly pumped monolithic nonplanar HoYAG ring laser with high-power single-frequency laser output at 2122 nm[J]. Optics Letters, 2013, 21(8): 9541-9546.

    [23] Wang R, Gao C Q, Zheng Y, et al. A resonantly pumped 1645 nm ErYAG nonplanar ring oscillator with 10.5 W single frequency output[J]. IEEE Photonics Technology Letters, 2013, 25(10): 955-957.

    [24] Gao M W, Zhao Y, Zhang L Y, et al. 1319-nm single-frequency output from diffusion-bonded monolithic nonplanar Nd:YAG ring resonator with undoped end[J]. Chinese Physics Letters, 2013, 11(4): 041406.

    [25] Martin K I, Clarkson W A, Hanna D C, et al. High-power single-frequency operation, at 1064 nm and 1061.4 nm of a Nd:YAG ring laser end-pumped by a beam-shaped diode bar[J]. Optics Communications, 1997, 135(1-3): 89-92.

    [26] Zhao J Q, Wang Y Z, Yao B Q, et al. High efficiency, single-frequency continuous wave NdYVO4/YVO4 ring laser[J]. Laser Physics Letters, 2010, 7(2): 135-138.

    [27] Shardlow P C, Damzen M J. High efficiency 17 W single frequency ring laser with feedback mirror[C]. European Conference on Lasers and Electro-Optics 2009 and European Quantum Electronics Conference, Munich, 2009: 1.

    [28] Zhao W F, Hou W, Guo L, et al. 12 W high efficiency single frequency ring laser[J]. Laser Physics Letters, 2010, 7(3): 210-212.

    [29] Liu J L, Wang Z Y, Li H, et al. Stable, 12 W, continuous-wave single-frequency NdYVO4 green laser polarized and dual-end pumped at 880 nm[J]. Optics Express, 2011, 19(7): 6777-6782.

    [30] Martin K, Clarkson W, Hanna D. Self-suppression of axial mode hopping by intracavity second-harmonic generation[J]. Optics Letters, 1997, 22(6): 375-377.

    [31] Wang Y J, Yang W H, Zhou H J, et al. Temperature dependence of the fractional thermal load of NdYVO4 at 1064 nm lasing and its influence on laser performance[J]. Optics Express, 2013, 21(15): 18068-18078.

    [32] Wu E, Pan H, Zhang S, et al. High power single-longitudinal-mode operation in a twisted-mode-cavity laser with a c-cut NdGdVO4 crystal[J]. Applied Physics B, 2005, 80: 459-462.

    [33] Gao C, Wang R, Lin Z, et al. 2 μm single-frequency TmYAG laser generated from a diode-pumped L-shaped twisted mode cavity[J]. Applied Physics B, 2012, 107(1): 67-70.

    [34] Frede M, Schulz B, Wilhelm R, et al. Fundamental mode, single-frequency laser amplifier for gravitational wave detectors[J]. Optics Express, 2007, 15(2): 459-465.

    [35] Wang P Y, Xie S Y, Bo Y, et al. 33 W quasi-continuous-wave narrow-band sodium D2a laser by sum-frequency generation in LBO[J]. Chinese Physics B, 2014, 23(9): 094208.

    [36] Agnesi A, Dallocchio P, Pirzio F, et al. Sub-nanosecond single-frequency 10-kHz diode-pumped MOPA laser[J]. Applied Physics B, 2010, 98(4): 737-741.

    [37] Winkelmann L, Puncken O, Kluzik R, et al. Injection-locked single-frequency laser with an output power of 220 W[J]. Applied Physics B, 2011, 102(3): 529-538.

    [38] Hovis F E, Wang J X. High efficiency UV laser for space-based wind lidar[C]. SPIE, 2007, 6555: 655504.

    [39] Petros M, Yu H Y, Trieu B, et al. The selection of Q-switch for a 350 mJ air-borne 2 μm wind lidar[C]. SPIE, 2008, 7153: 715309.

    [40] Lu T T, Wang J T, Zhu Z L, et al. Highly efficient single longitudinal mode-pulsed green laser[J]. Chinese Physics Letters, 2013, 11(5): 051402.

    [41] Li S G, Ma X H, Li H H, et al. Laser-diode-pumped zigzag slab Nd:YAG master oscillator power amplifier[J]. Chinese Physics Letters, 2013, 11(7): 071402.

    [42] Ma P F, Zhou P, Ma Y X, et al. Single-frequency 332 W, linearly polarized Yb-doped all-fiber amplifier with near diffraction-limited beam quality[J]. Applied Optics, 2013, 52(20): 4854-4857.

    [43] Karow M, Basu C, Kracht D, et al. TEM00 mode content of a two stage single-frequency Yb-doped PCF MOPA with 246 W of output power[J]. Optics Express, 2012, 20(5): 5319-5324.

    [44] Jeong Y C, Nilsson J, Sahu J K, et al. Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 546-551.

    [45] Su R T, Zhou P, Wang X L, et al. Active coherent beam combining of a five-element, 800 W nanosecond fiber amplifier array[J]. Optics Letters, 2012, 37(19): 3978-3980.

    CLP Journals

    [1] Zhang Lianping, Yin Guoling, Li Fengqin, Shi Zhu, Lu Huadong. All-Solid-State Tunable Ti∶Sapphire Laser with High-Power and Single-Frequency at 900 nm[J]. Chinese Journal of Lasers, 2017, 44(12): 1201002

    [2] Long Jiangxiong, Li Gang, Yang Bin, Yao Hongquan, Ding Jianyong, Zhou Jun. Progress in Injection-Seeded All-Solid-State Single-Frequency Pulse Laser[J]. Laser & Optoelectronics Progress, 2018, 55(9): 90001

    Li Menglong, Gao Long, Shi Wenzong, Feng Wen, Yan Fanjiang, Tao Yuliang. Progress in All-Solid-State Single-Frequency Lasers[J]. Laser & Optoelectronics Progress, 2016, 53(8): 80003
    Download Citation