• Advanced Photonics
  • Vol. 5, Issue 6, 066007 (2023)
Feng Li1, Sergei V. Koniakhin2、3, Anton V. Nalitov4、5、6, Evgeniia Cherotchenko7, Dmitry D. Solnyshkov8、9, Guillaume Malpuech8, Min Xiao10、11, Yanpeng Zhang1, and Zhaoyang Zhang1、*
Author Affiliations
  • 1Xi’an Jiaotong University, Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Shaanxi Key Laboratory of Information Photonic Technique, School of Electronic Science and Engineering, Faculty of Electronics and Information, Xi’an, China
  • 2Institute for Basic Science, Center for Theoretical Physics of Complex Systems, Daejeon, Republic of Korea
  • 3Korea University of Science and Technology (UST), Basic Science Program, Daejeon, Republic of Korea
  • 4Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
  • 5University of Wolverhampton, Faculty of Science and Engineering, Wolverhampton, United Kingdom
  • 6ITMO University, St. Petersburg, Russia
  • 7Ioffe Institute, St. Petersburg, Russia
  • 8Université Clermont Auvergne, Institut Pascal, PHOTON-N2, CNRS, Clermont INP, Clermont-Ferrand, France
  • 9Institut Universitaire de France, Paris, France
  • 10University of Arkansas, Department of Physics, Fayetteville, Arkansas, United States
  • 11Nanjing University, School of Physics, National Laboratory of Solid State Microstructures, Nanjing, China
  • show less
    DOI: 10.1117/1.AP.5.6.066007 Cite this Article Set citation alerts
    Feng Li, Sergei V. Koniakhin, Anton V. Nalitov, Evgeniia Cherotchenko, Dmitry D. Solnyshkov, Guillaume Malpuech, Min Xiao, Yanpeng Zhang, Zhaoyang Zhang. Simultaneous creation of multiple vortex-antivortex pairs in momentum space in photonic lattices[J]. Advanced Photonics, 2023, 5(6): 066007 Copy Citation Text show less
    References

    [1] L. Onsager. Statistical hydrodynamics. Il Nuovo Cimento (1943-1954), 6, 279-287(1949).

    [2] A. A. Abrikosov. The magnetic properties of superconducting alloys. J. Phys. Chem. Solids, 2, 199-208(1957).

    [3] A. S. Bradley, B. P. Anderson. Energy spectra of vortex distributions in two-dimensional quantum turbulence. Phys. Rev. X, 2, 041001(2012).

    [4] G. Gauthier et al. Giant vortex clusters in a two-dimensional quantum fluid. Science, 364, 1264-1267(2019).

    [5] S. P. Johnstone et al. Evolution of large-scale flow from turbulence in a two-dimensional superfluid. Science, 364, 1267-1271(2019).

    [6] S. Koniakhin et al. 2D quantum turbulence in a polariton quantum fluid. Chaos, Solitons Fractals, 132, 109574(2020).

    [7] I. Carusotto, C. Ciuti. Quantum fluids of light. Rev. Mod. Phys., 85, 299-366(2013).

    [8] K. G. Lagoudakis et al. Quantized vortices in an exciton–polariton condensate. Nat. Phys., 4, 706-710(2008).

    [9] S. Koniakhin et al. Stationary quantum vortex street in a driven-dissipative quantum fluid of light. Phys. Rev. Lett., 123, 215301(2019).

    [10] F. Claude et al. Taming the snake instabilities in a polariton superfluid. Optica, 7, 1660-1665(2020).

    [11] D. Caputo et al. Topological order and thermal equilibrium in polariton condensates. Nat. Mater., 17, 145-151(2018).

    [12] A. Kavokin, G. Malpuech, M. Glazov. Optical spin Hall effect. Phys. Rev. Lett., 95, 136601(2005).

    [13] S. Koniakhin et al. Topological turbulence in spin-orbit–coupled driven-dissipative quantum fluids of light generates high-angular-momentum states. Europhys. Lett., 133, 66001(2021).

    [14] Y. G. Rubo. Half vortices in exciton polariton condensates. Phys. Rev. Lett., 99, 106401(2007).

    [15] S. Dufferwiel et al. Spin textures of exciton-polaritons in a tunable microcavity with large TE-TM splitting. Phys. Rev. Lett., 115, 246401(2015).

    [16] C. Bena, G. Montambaux. Remarks on the tight-binding model of graphene. New J. Phys., 11, 095003(2009).

    [17] J. Fuchs et al. Topological Berry phase and semiclassical quantization of cyclotron orbits for two dimensional electrons in coupled band models. Eur. Phys. J. B, 77, 351-362(2010).

    [18] L.-K. Lim, J.-N. Fuchs, G. Montambaux. Geometry of Bloch states probed by Stückelberg interferometry. Phys. Rev. A, 92, 063627(2015).

    [19] X. Liu et al. Universal momentum-to-real-space mapping of topological singularities. Nat. Commun., 11, 1586(2020).

    [20] D. Song et al. Valley vortex states and degeneracy lifting via photonic higher-band excitation. Phys. Rev. Lett., 122, 123903(2019).

    [21] Y. Zhang et al. Observation of polarization vortices in momentum space. Phys. Rev. Lett., 120, 186103(2018).

    [22] B. Wang et al. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum. Nat. Photonics, 14, 623-628(2020).

    [23] K. Yang, Y. Wang, C.-X. Liu. Momentum-space spin antivortex and spin transport in monolayer pb. Phys. Rev. Lett., 128, 166601(2022).

    [24] P. Vaity, L. Rusch. Perfect vortex beam: Fourier transformation of a Bessel beam. Opt. Lett., 40, 597-600(2015).

    [25] X. Qiu et al. Optical vortex copier and regenerator in the Fourier domain. Photonics Res., 6, 641-646(2018).

    [26] V. Kotlyar, A. Kovalev, A. Porfirev. Vortex astigmatic Fourier-invariant Gaussian beams. Opt. Express, 27, 657-666(2019).

    [27] B. Muminov, L. T. Vuong. Fourier optical preprocessing in lieu of deep learning. Optica, 7, 1079-1088(2020).

    [28] J. Gea-Banacloche et al. Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment. Phys. Rev. A, 51, 576-584(1995).

    [29] Z. Zhang et al. Angular-dependent Klein tunneling in photonic graphene. Phys. Rev. Lett., 129, 233901(2022).

    [30] Z. Zhang et al. Observation of edge solitons in photonic graphene. Nat. Commun., 11, 1902(2020).

    [31] Z. Zhang et al. Particlelike behavior of topological defects in linear wave packets in photonic graphene. Phys. Rev. Lett., 122, 233905(2019).

    [32] D. Song et al. Unveiling pseudospin and angular momentum in photonic graphene. Nat. Commun., 6, 6272(2015).

    [33] Z. Zhang et al. Spin-orbit coupling in photonic graphene. Optica, 7, 455(2020).

    [34] M. Boguslawski, P. Rose, C. Denz. Increasing the structural variety of discrete nondiffracting wave fields. Phys. Rev. A, 84, 013832(2011).

    [35] S. V. Koniakhin. Ratchet effect in graphene with trigonal clusters. Eur. Phys. J. B, 87, 216(2014).

    [36] C. Dutreix et al. Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature, 574, 219-222(2019).

    [37] T. Boulier et al. Vortex chain in a resonantly pumped polariton superfluid. Sci. Rep., 5, 9230(2015).

    [38] D. Choi et al. Observation of a single quantized vortex vanishment in exciton-polariton superfluids. Phys. Rev. B, 105, L060502(2022).

    [39] L. D. Landau, E. M. Lifshitz. Mechanics(1976).

    [40] L. Fu, C. L. Kane. Topological insulators with inversion symmetry. Phys. Rev. B, 76, 045302(2007).

    [41] H. C. Po, A. Vishwanath, H. Watanabe. Symmetry-based indicators of band topology in the 230 space groups. Nat. Commun., 8, 50(2017).

    [42] Z. Song et al. Quantitative mappings between symmetry and topology in solids. Nat. Commun., 9, 3530(2018).

    [43] F. Tang et al. Efficient topological materials discovery using symmetry indicators. Nat. Phys., 15, 470-476(2019).

    [44] A. Chong et al. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat. Photonics, 14, 350-354(2020).

    [45] D. G. Grier. A revolution in optical manipulation. Nature, 424, 810-816(2003).

    [46] M. Erhard et al. Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl., 7, 17146(2018).

    [47] D. Gao et al. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. Light Sci. Appl., 6, e17039(2017).

    [48] M. Padgett, R. Bowman. Tweezers with a twist. Nat. Photonics, 5, 343-348(2011).

    [49] J. Wang et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [50] G. Spektor et al. Orbital angular momentum multiplication in plasmonic vortex cavities. Sci. Adv., 7, eabg5571(2021).

    [51] Y. B. Pointin, T. Lundgren. Statistical mechanics of two-dimensional vortices in a bounded container. Phys. Fluids (1994), 19, 1459-1470(1976).

    [52] J. H. Kim, W. J. Kwon, Y.-I. Shin. Role of thermal friction in relaxation of turbulent Bose-Einstein condensates. Phys. Rev. A, 94, 033612(2016).

    [53] M. T. Reeves et al. Enstrophy cascade in decaying two-dimensional quantum turbulence. Phys. Rev. Lett., 119, 184502(2017).

    [54] X. Yu, A. S. Bradley. Emergent non-eulerian hydrodynamics of quantum vortices in two dimensions. Phys. Rev. Lett., 119, 185301(2017).

    [55] R. N. Valani, A. J. Groszek, T. P. Simula. Einstein–Bose condensation of Onsager vortices. New J. Phys., 20, 053038(2018).

    [56] R. Panico et al. Onset of vortex clustering and inverse energy cascade in dissipative quantum fluids. Nat. Photonics, 17, 451-456(2023).

    [57] T. Simula, M. J. Davis, K. Helmerson. Emergence of order from turbulence in an isolated planar superfluid. Phys. Rev. Lett., 113, 165302(2014).

    [58] H. Salman, D. Maestrini. Long-range ordering of topological excitations in a two-dimensional superfluid far from equilibrium. Phys. Rev. A, 94, 043642(2016).

    [59] O. Jamadi et al. Reconfigurable photon localization by coherent drive and dissipation in photonic lattices. Optica, 9, 706-712(2022).

    Feng Li, Sergei V. Koniakhin, Anton V. Nalitov, Evgeniia Cherotchenko, Dmitry D. Solnyshkov, Guillaume Malpuech, Min Xiao, Yanpeng Zhang, Zhaoyang Zhang. Simultaneous creation of multiple vortex-antivortex pairs in momentum space in photonic lattices[J]. Advanced Photonics, 2023, 5(6): 066007
    Download Citation