• Laser & Optoelectronics Progress
  • Vol. 55, Issue 12, 120011 (2018)
Pengfei Cui, Linghui Yang, Jiarui Lin, and Jigui Zhu*
Author Affiliations
  • State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/LOP55.120011 Cite this Article Set citation alerts
    Pengfei Cui, Linghui Yang, Jiarui Lin, Jigui Zhu. Application of Femtosecond Optical Frequency Comb in Precise Absolute Distance Measurement[J]. Laser & Optoelectronics Progress, 2018, 55(12): 120011 Copy Citation Text show less
    References

    [1] Schmitt R H, Peterek M, Morse E et al. Advances in large-scale metrology-review and future trends[J]. CIRP Annals, 65, 643-665(2016). http://www.sciencedirect.com/science/article/pii/S0007850616301895

    [2] Fleming A J. A review of nanometer resolution position sensors:operation and performance[J]. Sensors and Actuators A: Physical, 190, 106-126(2013). http://www.sciencedirect.com/science/article/pii/S0924424712006267

    [3] Quinn T J. Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001)[J]. Metrologia, 40, 103-133(2003). http://www.iop.org/EJ/abstract/0026-1394/42/4/018

    [4] Jeschke S, Brecher C, Meisen T et al[M]. Industrial internet of things and cyber manufacturing systems, 3-19(2017).

    [5] Minoshima K, Matsumoto H. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser[J]. Applied Optics, 39, 5512-5517(2000). http://www.opticsinfobase.org/abstract.cfm?URI=ao-39-30-5512

    [6] Jones D J, Diddams S A, Ranka J K et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science, 288, 635-639(2000). http://www.tandfonline.com/servlet/linkout?suffix=CIT0133&dbid=8&doi=10.1080%2F09500340.2018.1441917&key=10784441

    [7] Udem T, Holzwarth R, Hänsch T. Femtosecond optical frequency combs[J]. The European Physical Journal Special Topics, 172, 69-79(2009).

    [8] Ye J. Absolute measurement of a long, arbitrary distance to less than an optical fringe[J]. Optics Letters, 29, 1153-1155(2004). http://www.ncbi.nlm.nih.gov/pubmed/15182016

    [9] Balling P. K en P, Mašika P, et al. Femtosecond frequency comb based distance measurement in air [J]. Optics Express, 17, 9300-9313(2009).

    [10] Cui M, Zeitouny M G, Bhattacharya N et al. High-accuracy long-distance measurements in air with a frequency comb laser[J]. Optics Letters, 34, 1982-1984(2009). http://www.onacademic.com/detail/journal_1000035242483810_6836.html

    [11] Wu H Z, Cao S Y, Zhang F M et al. A new method of measuring absolute distance by using optical frequency comb[J]. Acta Physica Sinica, 63, 100601(2014).

    [12] Zhu J G, Cui P F, Guo Y et al. Pulse-to-pulse alignment based on interference fringes and the second-order temporal coherence function of optical frequency combs for distance measurement[J]. Optics Express, 23, 13069-13081(2015). http://europepmc.org/abstract/med/26074560

    [13] Liu Y, Yang L H, Guo Y et al. Optimization methods of pulse-to-pulse alignment using femtosecond pulse laser based on temporal coherence function for practical distance measurement[J]. Optics and Lasers in Engineering, 101, 35-43(2018). http://adsabs.harvard.edu/abs/2018OptLE.101...35L

    [14] Lee J, Kim Y J, Lee K et al. Time-of-flight measurement with femtosecond light pulses[J]. Nature Photonics, 4, 716-720(2010). http://www.nature.com/nphoton/journal/v4/n10/abs/nphoton.2010.175.html

    [15] Lee J, Lee K, Lee S et al. High precision laser ranging by time-of-flight measurement of femtosecond pulses[J]. Measurement Science and Technology, 23, 065203(2012). http://www.ingentaconnect.com/content/iop/mst/2012/00000023/00000006/art065203

    [16] Qin P, Chen W, Song Y J et al. Long range absolute distance measurement based on femtosecond laser balanced optical cross-correlation[J]. Acta Physica Sinica, 61, 240601(2012).

    [17] Wu G H, Takahashi M, Inaba H et al. Pulse-to-pulse alignment technique based on synthetic-wavelength interferometry of optical frequency combs for distance measurement[J]. Optics Letters, 38, 2140-2143(2013). http://europepmc.org/abstract/MED/23939003

    [18] Liao L, Yi W M, Yang Z H et al. Synthetic-wavelength based absolute distance measurement using heterodyne interferometry of a femtosecond laser[J]. Acta Physica Sinica, 65, 140601(2016).

    [19] Wu G H, Liao L, Xiong S L et al. Synthetic wavelength interferometry of an optical frequency comb for absolute distance measurement[J]. Scientific Reports, 8, 4362(2018). http://www.nature.com/articles/s41598-018-22838-0

    [20] Coddington I, Swann W C, Nenadovic L et al. Rapid and precise absolute distance measurements at long range[J]. Nature Photonics, 3, 351-356(2009). http://www.nature.com/nphoton/journal/v3/n6/abs/nphoton.2009.94.html

    [21] Zhang H Y, Wei H Y, Wu X J et al. Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling[J]. Optics Express, 22, 6597-6604(2014). http://www.ncbi.nlm.nih.gov/pubmed/24664008

    [22] Wu G H, Zhou Q, Shen L F et al. Experimental optimization of the repetition rate difference in dual-comb ranging system[J]. Applied Physics Express, 7, 106602(2014). http://adsabs.harvard.edu/abs/2014APExp...7j6602W

    [23] Wu G H, Xiong S L, Ni K et al. Parameter optimization of a dual-comb ranging system by using a numerical simulation method[J]. Optics Express, 23, 32044-32053(2015). http://www.opticsinfobase.org/abstract.cfm?uri=oe-23-25-32044

    [24] Han S, Kim Y J, Kim S W. Parallel determination of absolute distances to multiple targets by time-of-flight measurement using femtosecond light pulses[J]. Optics Express, 23, 25874-25882(2015). http://www.opticsinfobase.org/abstract.cfm?uri=oe-23-20-25874

    [25] Zhang H Y, Wei H Y, Yang H L et al. Active laser ranging with frequency transfer using frequency comb[J]. Applied Physics Letters, 108, 181101(2016). http://scitation.aip.org/content/aip/journal/apl/108/18/10.1063/1.4948593

    [26] Ji R W, Zhou W H, Li Y et al. High absolute distance measurement system of laser tracker[J]. Optics and Precision Engineering, 24, 148-155(2016).

    [27] Yu J H, Shi H S, Song Y J et al. Study on Kalman filtering in high-precision absolute distance measurement based on dual femtosecond lasers[J]. Chinese Journal of Lasers, 44, 0610001(2017).

    [28] Nakajima Y, Minoshima K. Highly stabilized optical frequency comb interferometer with a long fiber-based reference path towards arbitrary distance measurement[J]. Optics Express, 23, 25979-25987(2015). http://europepmc.org/abstract/MED/26480113

    [29] Wu H Z, Zhang F M, Liu T Y et al. Long distance measurement using optical sampling by cavity tuning[J]. Optics Letters, 41, 2366-2369(2016). http://www.ncbi.nlm.nih.gov/pubmed/27177004

    [30] Cui P F, Yang L H, Guo Y et al. Absolute distance measurement using an optical comb and an optoelectronic oscillator[J]. IEEE Photonics Technology Letters, 30, 744-747(2018). http://ieeexplore.ieee.org/document/8314109/

    [31] Huang M S. Time-of-flight laser ranging technique of single transmitted pulse[J]. Laser & Optoelectronics Progress, 54, 120007(2017).

    [32] Zhuge J C, Xing S J, Gao J S. Theoretical analysis of arbitrary and absolute length measurement by using femtosecond optical frequency comb[J]. Acta Optica Sinica, 36, 0112004(2016).

    [33] Doloca N R, Meiners-Hagen K, Wedde M et al. Absolute distance measurement system using a femtosecond laser as a modulator[J]. Measurement Science and Technology, 21, 115302(2010). http://adsabs.harvard.edu/abs/2010MeScT..21k5302D

    [34] Minoshima K. High-precision absolute length metrology using fiber-based optical frequency combs. [C]∥International Conference on Electromagnetics in Advanced Applications, September 20-24, 2010, Sydney, Australia. New York: IEEE, 800-802(2010).

    [35] Zhang X S, Yi W M, Hu M H et al. Large-scale absolute distance measurement using inter-mode beat of a femtosecond laser[J]. Acta Physica Sinica, 65, 080602(2016).

    [36] Joo K N, Kim S W. Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser[J]. Optics Express, 14, 5954-5960(2006). http://www.ncbi.nlm.nih.gov/pubmed/19516765

    [37] Persijn S T, Kok G J P et al. . Many-wavelength interferometry with thousands of lasers for absolute distance measurement[J]. Physical Review Letters, 108, 183901(2012). http://www.ncbi.nlm.nih.gov/pubmed/22681076

    [38] van Eldik S, Bhattacharya N. Mode-resolved frequency comb interferometry for high-accuracy long distance measurement[J]. Scientific Reports, 5, 14661(2015). http://www.ncbi.nlm.nih.gov/pubmed/26419282

    [39] Wu H Z, Cao S Y, Zhang F M et al. Spectral interferometry based absolute distance measurement using frequency comb[J]. Acta Physica Sinica, 64, 020601(2015).

    [40] Wu H Z, Zhang F M, Liu T Y et al. Absolute distance measurement by chirped pulse interferometry using a femtosecond pulse laser[J]. Optics Express, 23, 31582-31593(2015). http://www.ncbi.nlm.nih.gov/pubmed/26698781

    [41] Liu T Y, Zhang F M, Wu H Z et al. Time-frequency analysis in absolute distance measurement using chirped pulse interferometry[J]. Chinese Journal of Lasers, 43, 0904005(2016).

    [42] Kato T, Uchida M, Minoshima K. No-scanning 3D measurement method using ultrafast dimensional conversion with a chirped optical frequency comb[J]. Scientific Reports, 7, 3670(2017). http://europepmc.org/articles/PMC5473894/

    [43] Wang G C, Tan L L, Yan S H et al. Synchronous phase demodulation for real-time absolute distance measurement based on optical comb multi-wavelength interferometry[J]. Acta Optica Sinica, 37, 0112003(2017).

    [44] Schuhler N, Salvadé Y, Lévêque S et al. Frequency-comb-referenced two-wavelength source for absolute distance measurement[J]. Optics Letters, 31, 3101-3103(2006). http://www.ncbi.nlm.nih.gov/pubmed/17041648/

    [45] Salvadé Y, Schuhler N, Lévêque S et al. High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source[J]. Applied Optics, 47, 2715-2720(2008). http://europepmc.org/abstract/MED/18470268

    [46] Zhang J T, Wu X J, Li Y et al. Method for improving the accuracy of step height measurement based on optical frequency comb[J]. Acta Physica Sinica, 61, 100601(2012).

    [47] Jang Y S, Wang G C, Hyun S et al. Comb-referenced laser distance interferometer for industrial nanotechnology[J]. Scientific Reports, 6, 31770(2016). http://www.nature.com/articles/srep31770

    [48] Wu X J, Wei H Y, Zhang H Y et al. Absolute distance measurement using frequency-sweeping heterodyne interferometer calibrated by an optical frequency comb[J]. Applied Optics, 52, 2042-2048(2013). http://www.ncbi.nlm.nih.gov/pubmed/23545958

    [49] Baumann E, Giorgetta F R, Coddington I et al. Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements[J]. Optics Letters, 38, 2026-2028(2013). http://www.opticsinfobase.org/ol/upcoming_pdf.cfm?id=187914

    [50] Baumann E, Giorgetta F R, Deschênes J D et al. Comb-calibrated laser ranging for three-dimensional surface profiling with micrometer-level precision at a distance[J]. Optics Express, 22, 24914-24928(2014). http://www.ncbi.nlm.nih.gov/pubmed/25401525

    [51] Zhang W P, Wei H Y, Yang H L et al. Comb-referenced frequency-sweeping interferometry for precisely measuring large stepped structures[J]. Applied Optics, 57, 1247-1253(2018). http://www.opticsinfobase.org/ao/abstract.cfm?uri=ao-57-5-1247

    [52] Wang G C, Yan S H, Yang J et al. Analysis of an innovative method for large-scale high-precision absolute distance measurement based on multi-heterodyne interference of dual optical frequency combs[J]. Acta Physica Sinica, 62, 070601(2013).

    [53] Yang R T, Pollinger F, Meiners-Hagen K et al. Heterodyne multi-wavelength absolute interferometry based on a cavity-enhanced electro-optic frequency comb pair[J]. Optics Letters, 39, 5834-5837(2014). http://europepmc.org/abstract/med/25361097

    [54] Yang R T, Pollinger F, Meiners-Hagen K et al. Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection[J]. Measurement Science and Technology, 26, 084001(2015). http://www.ingentaconnect.com/content/iop/mst/2015/00000026/00000008/art084001

    [55] Wu H Z, Zhao T, Wang Z Y et al. Long distance measurement up to 1.2 km by electro-optic dual-comb interferometry[J]. Applied Physics Letters, 111, 251901(2017). http://adsabs.harvard.edu/abs/2017ApPhL.111y1901W

    [56] Meng X S, Zhang F M, Qu X H. High precision and fast method for absolute distance measurement based on resampling technique used in FM continuous wave laser ranging[J]. Acta Physica Sinica, 64, 230601(2015).

    [57] Xiao S J, Hollberg L, Newbury N R et al. Toward a low-jitter 10 GHz pulsed source with an optical frequency comb generator[J]. Optics Express, 16, 8498-8508(2008). http://europepmc.org/abstract/MED/18545564

    [58] Metcalf A J, Torres-Company V, Leaird D E et al. High-power broadly tunable electrooptic frequency comb generator[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 231-236(2013). http://ieeexplore.ieee.org/document/6553388/

    [59] Mildner J, Meiners-Hagen K, Pollinger F. Dual-frequency comb generation with differing GHz repetition rates by parallel Fabry-Perot cavity filtering of a single broadband frequency comb source[J]. Measurement Science and Technology, 27, 074011(2016). http://adsabs.harvard.edu/abs/2016MeScT..27g4011M

    Pengfei Cui, Linghui Yang, Jiarui Lin, Jigui Zhu. Application of Femtosecond Optical Frequency Comb in Precise Absolute Distance Measurement[J]. Laser & Optoelectronics Progress, 2018, 55(12): 120011
    Download Citation